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"Only when we are able to view life-as-ute-knoiv-it in the larger 
context of Ufe-as-iUxndd-be will we really understand the nature 
of the beast Artificial Life (AL) is a relatively new field 
employing a synthetic approach to the study of tife-as-itcould-be. 
It views life as a property of the organization of matter, rather 
than a property of the matter which is so organized." 

- Chris Langten, Artificial Life (1989) 

Now, substitute the word combat for life. 

Image from ftp://parcf^>.xerox.com/pub/dynamics/dynamics.html 

"War is ... not the action of a living force upon lifeless mass 
but always the collision of two living forces." 

- Carl von Clausewitz, On War 
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Executive Summary 

This study is a follow-on effort to a recently completed project, 
sponsored by the Commanding General, Marine Corps Combat 
Development Command (MCCDC), that assessed the general 
applicability of the new sciences to land warfare. "New sciences" is a 
catch-all phrase that refers to the tools and methodologies used in 
nonlinear dynamics and complex systems theory to study physical 
systems that exhibit a "complicated dynamics." 

Perhaps the single most important lesson of the new sciences is the 
observation that the collective decentralized interaction among 
individual agents obeying local rules often appears locally disordered 
but induces - on a higher level - a globally ordered pattern of behavior. 
The central thesis of this report (and developed in earlier reports [1] 
and [2]) is that the general mechanisms responsible for emerging 
patterns in complex adaptive systems can be used to further our insight 
into the patterns of behavior that arise on the real combat batdefield. 
That is, that land combat can be modeled as a complex adaptive system. 

As a background to why such an approach might be an important one 
to take at this time - and how it differs from most current 
state-of-the-art models of land combat - consider what has been, for the 
last century, the "conventional wisdom" regarding our fundamental 
understanding of the basic processes of war. 

In 1914, F. W. Lanchester introduced a set of coupled ordinary 
differential equations - now commonly called the Lanchester Equations 
(LEs) - as models of attrition in modern warfare [3]. Similar ideas 
were proposed around that time by Chase [4] and Osipov [5]. The 
virtue of the LEs, and their intuitive appeal, lies in their shear 
simplicity. For example, their most basic form consists simply of the 
statement that one side's attrition rate is proportional to the opposing 
side's size. The Lanchesterian approach, in general, represents a view of 
combat in which the driving phenomenon is always force-on-force 
attrition. This view has served venerably as the conceptual foundation 
upon which most modern theories of combat attrition are based. 

From a fundamental standpoint, however, there are many limitations to 
using LEs to represent modern combat. Two of the biggest limitations 
are (1) they do not account for any spatial variation of forces (i.e., no 
link is established, for example, between movement and attrition) and 
(2) they completely disregard the human factor in combat (i.e., the 
psychological and/or decision-making capability of the human 
combatant). 

Therefore, LE-derived models of land warfare are inadequate for 
assessing advanced warfighting concepts, such as those being explored 
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by the Marine Corps. In particular, the Lanchesterian view of combat 
does not adequately represent the Marine Corps' vision of combat: 
small, highly trained, well-armed autonomous teams working in 
concert, continually adapting to changing conditions and 
environments. As an alternative, we suggest that recent developments in 
complex systems theory - particularly the set of multiagent-based 
simulation tools developed in the artificial life community - provide a 
new set of tools for addressing land warfare in a fundamentally different 
way. 

To this end, CNA is currently developing a multiagent-based simulation 
of notional combat called ISAAC (Irreducible Semi-Autonomous 
Adaptive Combat), a preliminary version of which is described in this 
report. ISAAC takes a bottom-up, synthesist approach to the modeling of 
combat, vice the more traditional top-down, or reductionist approach. 

Models based on differential equations homogenize the properties of 
entire populations and ignore the spatial component altogether. Partial 
differential equations - by introducing a physical space to account for 
troop movement - fare somewhat better, but still treat the agent 
population as a continuum. In contrast, ISAAC consists of a discrete 
heterogeneous set of spatially distributed individual agents (i.e., 
combatants), each of which has its own characteristic properties and 
rules of behavior. These properties can also change (i.e., adapt) as an 
individual agent evolves in time. 

The basic element of ISAAC is an ISAAC Agent (or ISAACA), which 
loosely represents a primitive combat unit (infantryman, tank, transport 
vehicle, etc.) that is equipped with the following characteristics: 

• A default local-rule set specifying how to  act in  a generic 
environment (i.e., an embedded "doctrine") 

• Goals directing behavior ("mission") 

• Sensors generating an internal map of environment ("situational 
awareness") 

• An internal adaptive mechanism to alter behavior and/or rules. 

A global rule set determines combat attrition, reconstitution and (in 
future versions) reinforcement. ISAAC also contains both local and 
global commanders, each with their own command radii, and obeying 
an evolving C2 hierarchy of rules. 

Most traditional models focus on looking for equilibrium "solutions" 
among some set of (pre-defined) aggregate variables. The LEs are 
effectively mean-field equations (in the parlance of physics), in which 
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certain variables such as attrition rate are assumed to represent an 
entire force and the outcome of a batde is said to be "understood" 
when the equilibrium state has been explicitly solved for. In contrast, 
ISAAC focuses on understanding the kinds of emergent patterns that 
might arise while the overall system is out of equilibrium. 

In ISAAC, the "final outcome" of a battie - as defined, say, by measuring 
the surviving force strengths - takes second stage to exploring how two 
forces might "co-evolve" during combat. A few examples of the 
profoundly non-equilibrium dynamics that characterizes much of real 
combat include: the sudden "flash of insight" of a clever commander 
that changes the course of a battle; the swift flanking maneuver that 
surprises the enemy; and the serendipitous confluence of several 
far-separated (and unorchestrated) events that lead to victory. These 
are the kinds of behavior that Lanchesterian-based models are in 
principle incapable of addressing. ISAAC represents a first step toward 
being able to explore such questions. 

ISAAC is designed to allow the user to explore the evolving patterns of 
macroscopic behavior that result from the collective interactions of 
individual agents, as well as the feedback that these patterns might have 
on the rules governing the individual agents' behavior. ISAAC can 
currendy be run in three different "modes": 

• Interactive Mode, in which the user can make 'on-the-fly' 
changes to the values of any (or all) parameters defining a given 
run (including the "decision-making personality" of individual 
ISAACAs). This mode is well suited for playing simple "What iß" 
scenarios and for interactively "searching" for interesting 
emergent behavior. 

• Data-Collection Mode, in which the user can (1) generate time 
series of various changing quantities describing the step-by-step 
evolution of a battle, and (2) keep track of certain measures of 
"how well" mission objectives are met at a batde's conclusion. 
Additionally, the user can generate complete behavioral profiles 
on two dimensional slices of ISAAC'S N-dimensional parameter 
space. 

• Genetic Algorithm "Evolver" Mode, in which the user can evolve 
a local rule set (i.e., "personality") for one side that is "best" 
suited for performing some well-defined mission against a fixed 
rule set for the other. This mode illustrates how programs such 
as this can eventually be used to evolve real-world "tactics" and 
"strategies." 

While this preliminary version of ISAAC can do no more than suggest 
new ways of thinking about some old issues, it is encouraging to note 
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that, even at this early juncture, ISAAC already has an impressive 
repertoire of emergent behaviors: 

• Forward advance 

• Frontal attack 

• Local clustering 

• Penetration 

• Retreat 

• Attack posturing 

• Containment 

• Flanking Maneuvers 

• Defensive posturing 

• "Guerilla-like" assaults 

• Encirclement of enemy forces 

• many more ... 

Moreover, ISAAC frequently displays behaviors that appear to involve 
some form of "intelligent" division of red and blue forces to deal with 
local "firestorms" and skirmishes, particularly those forces whose 
personalities have been "evolved" (via a Genetic Algorithm) to perform a 
specific mission. It must be remembered that such behaviors are not 
hard-wired but are effectively an emergent property of a decentralized 
and nonlinear local dynamics. 

ISAAC has been developed primarily to address the basic question: "To 
what extent is land combat a self-organized emergent phenomenon?" As such, its 
intended use is not as a full system-level model of combat but as an 
interactive toolbox (or "conceptual playground") in which to explore 
high-level emergent behaviors arising from various low-level (i.e., 
individual combatant and squad-level) "interaction rules." The idea 
behind ISAAC is not to model in detail a specific piece of hardware 
(M16 rifle, M101 105mm howitzer, etc.), but to provide an 
understanding of the fundamental behavioral tradeoffs involved among 
a large number of notional variables. 

The payoff of using ISAAC, or some other multiagent-based model of 
land combat, is a radically new - and decidedly non-Lanchesterian - 
way of looking at some fundamental issues of land combat. Specifically, 
ISAAC is being designed to help analysts ... 

• Understand how all of the different elements of combat fit 
together in an overall "combat phase space:" Are there regions that 
are "sensitive" to small perturbations, and might there be a way to exploit 
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this in combat (as in selectively driving an opponent into more sensitive 
regions of phase space) ? 

• Understand the out-of-equilibrium patterns of behavior vice the 
approach to equilibrium states stressed by most conventional 
models 

• Identify and explore emergent collective patterns of behavior on 
the battlefield 

• Assess the value of information: How can I exploit what I know the 
enemy does not know about me? 

• Explore tradeoffs between centralized and decentralized 
command-and-control (C2) structures: Are some C2 topologies more 
conducive to information flow and attainment of mission objectives than 
others? What do the emergent forms of a self-organized C2 topology look 
like? 

• Provide a natural arena in which to explore consequences of 
various qualitative characteristics of combat (unit cohesion, 
morale, leadership, etc.) 

• Study the general efficacy of combat doctrine and tactics 

• Explore emergent properties and/or other "novel" behaviors 
arising from low-level rules (even doctrine if it is well encoded) 

• Capture universal patterns of combat behavior by focusing on a 
reduced set of critical drivers 

• Suggest likelihood of possible outcomes as a function of initial 
conditions 

Provide near-real-time tactical decision aids by providing a 
"natural selection" (via a genetic algorithm) of tactics and/or 
strategies for a given combat scenario. 

ISAAC provides a natural arena in which to explore the Clausewitzian 
"fog-of-war," or the effects of uncertainties and/or inaccuracies of 
intelligence data and of time-delays in reporting information. More 
important, from an Information Warfare perspective, ISAAC provides a 
framework for quantifying the "value" of information on a batüefield. 
ISAAC can, in principle, be used to explore the consequences of given 
(personality-defined) force and/or weapon mixes. It can also be used to 
re-examine traditional measures of combat effectiveness and define 
requirements for what might loosely be called nonlinear data collection, 
which    refers    to   data   that   capture    the    continuously   evolving 
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relationships among all of the interdependent components of combat 
(as compared with more static measures — such as force attrition — 
commonly used by conventional models). 

The ultimate goal is for ISAAC to become a fully developed complex 
systems theoretic analyst's toolbox for identifying, exploring and possibly 
exploiting emergent collective patterns of behavior on the battlefield. 

Organization of Paper 

This paper is organized into seven main sections, each of which is 
relatively self-contained: 

• Introduction. This section provides a thorough discussion of the 
background behind and motivation for the artificial-life 
approach to modeling land warfare, including several examples 
of decentralized self-organization. It also provides a short general 
introduction to multiagent-based modeling. 

• Overview of ISAAC. This section provides a detailed overview of 
the design philosophy and dynamical features of ISAAC. It 
discusses the overall program flow, introduces ISAACAs and what 
is meant by an ISAACA "personality," and provides an overview 
of ISAAC'S built-in command and control hierarchy. 

• User's Guide to ISAAC. This section provides a self-contained 
user's guide to ISAAC. This guide includes step-by-step 
instructions for loading the program, providing data input, 
running and interpreting all graphics output, and interacting 
with the program as it is running. This section also includes a 
detailed listing of all parameters appearing in ISAAC'S input data 
file. 

• Sample Runs. This section provides a small sampling of ISAAC'S 
"repertoire" of dynamical patterns of behavior by focusing on 
thirteen sample runs. These runs illustrate such "emergent" 
behaviors as forward advance, penetration, encirclement, 
containment, and flanking maneuvers, among many others. 
Some samples also show the effects of communications and both 
local and global command structures. 

• Data Collection. This section provides an overview of ISAAC'S 
rudimentary data collection capability (including a time series of 
remaining force size, distance and cluster-size distributions, and 
spatial entropy). A discussion is provided on how to use a 
separate stand-alone program to effectively "map out" ISAAC'S 
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dynamical   behavior   over  two-dimensional   slices   of ISAAC'S 
(much larger) overall N-dimensional parameter space. 

• Genetic Algorithm Evolution. This section essentially "mirrors" the 
content of sections 2 through 5 by providing a self-contained 
discussion of how to use a genetic algorithm to "evolve" ISAACA 
personalities. It contains an overview of the basic genetic 
algorithm recipe as it is used by ISAAC, defines "mission fitness," 
provides a user's guide to the stand-alone program that 
incorporates this recipe (including a complete listing of the 
contents of the appropriate input and output data files), and 
uses several sample runs to illustrate how this stand-alone 
program can be used to "evolve" personalities to perform a 
specific mission. 

• Future Enhancements. The final section discusses future design 
plans and provides a conceptual roadmap for how ISAAC can be 
used to explore some fundamental issues in land warfare, both in 
the short and long term. A more speculative discussion is 
provided centering on ways to use ISAAC to explore 
self-organized command and control structures and novel 
"self-organized" filtering of battlefield information. 

Additional information is provided in the appendices: 

• Appendix A consists of a short primer on cellular automata, and is 
useful background reading for those not familiar with this 
common tool in complex system theory modeling. 

• Appendix B provides a primer on genetic algorithms, and 
includes a short description of a novel way (first proposed by 
Hillis [6]) in which a genetic algorithm's ability to "solve" certain 
problems might be enhanced by pitting one genetic algorithm 
against another. 

• Appendix C contains a fragment of the ANSI-C source code for 
ISAAC, including header files, structures, the main function 
module (in its entirety) and a short description of all other 
functions appearing in the main module. 

• Appendix D contains a fragment of the ANSI-C source code for 
ISAAC_GA (i.e., the stand-alone genetic algorithm "evolver"), 
including header files, structures, and the main function module 
(in its entirety). 
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• Appendix E defines each of the individual data fields appearing in 
ISAAC'S output statistics files. This information can be used to 
generate desired plots using a stand-alone plotting program. 

• Appendix F provides a brief heuristic description of (and C source 
code for) the cluster counting algorithm used by ISAAC'S data 
collection module. 

• Appendix G contains sample data input files for ISAAC and the 
stand-alone genetic algorithm "personality-evolver" program. 

ISAAC is very much a "work in progress." This paper, and all 
accompanying programs and data files, must therefore be viewed as 
preliminary work only. However, even at this early stage of 
development, ISAAC shows where the serious user can gain significant 
insight into the fundamental processes of land combat. 
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Introduction 
This study is a follow-on effort to a recently completed project, 
sponsored by the Commanding General, Marine Corps Combat 
Development Command (MCCDC), that assessed the general 
applicability of the "new sciences" to land warfare. "New sciences" is a 
catch-all phrase that refers to the tools and methodologies used in 
nonlinear dynamics and complex systems theory to study physical 
dynamical systems that exhibit a "complicated dynamics." 

The final reports ([1] and [2]) for that assessment provide a 
broad-brush overview of the applicability of nonlinear dynamics and 
complex systems theory to land warfare. Reference [1] is a general 
technical source book of information on the key ideas, concepts and 
methodologies of nonlinear dynamics and complex systems theory, and 
contains an extensive glossary of terms. Reference [2] discusses specific 
"new sciences" ideas that can potentially add insight into our 
conventional understanding of land warfare. 

The central thesis of both these reports is that land combat can be 
thought of as a complex adaptive system. That is to say, land combat is a 
nonlinear dynamical system composed of many interacting 
semi-autonomous and hierarchically organized agents continuously 
adapting to a changing environment. 

Military conflicts, particularly land combat, have all of the key features 
of complex adaptive systems (see table 1): combat forces are composed 
of large numbers of nonlinearly interacting parts and are organized in a 
command and control hierarchy; local action, which often appears 
disordered, induces long-range order (i.e., combat is self-organized); 
military conflicts, by their nature, proceed far from equilibrium; 
military forces, in order to survive, must continually adapt to a changing 
combat environment; there is no master "voice" that dictates the actions 
of each and every combatant (i.e., battlefield action effectively proceeds 
according to a decentralized control); and so on. This means that, in 
principle, land combat ought to be amenable to precisely the same 
methodological course of study as any other complex adaptive system, 
such as the stock market, a natural ecology, or the human brain. 

Implicit in this central thesis is the idea that these largely conceptual 
links between properties of land warfare and properties of complex 
systems in general can be extended to forge a set of practical 
connections as well. Land warfare does not just look like a complex 
system on paper, but can well be characterized in practice using the 
same basic principles that are used for discovering and identifying 
behaviors in complex systems. 
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The program described in this report, called ISAAC, is a multiagent- 
based simulation of notional combat (an early version of which is 
described in [7]). ISAAC represents a first step toward developing a 
complex systems theoretic analyst's toolbox for identifying, exploring, 
and possibly exploiting emergent collective patterns of behavior on the 
real battlefield. 

Table 1. Land combat as a complex adaptive system 

Background 

General Property of 
Complex Systems 

Description of Relevance to 
Land Combat 

Nonlinear interaction 
Combat forces composed of a large number of 
nonlinearly interacting parts; sources include feedback 
loops in C2 hierarchy, interpretation of (and adaptation 
to) enemy actions, decision-making process, and 
elements of chance 

Nonreductionist 
The fighting ability" of a combat force cannot be 
understood as a simple aggregate function of the 
fighting ability of individual combatants 

Emergent Behavior The global patterns of behavior on the combat 
battlefield unfold, or emerge, out of nested sequences of 
local interaction rules and doctrine 

Hierarchical structure Combat forces are typically organized in a command and 
control (fractal-like) hierarchy 

Decentralized control There is no master "oracle" dictating the actions of each 
and every combatant; the course of a battle is ultimately 
dictated by local decisions made by each combatant 

Self-organization Local action, which often appears "chaotic," induces 
long-range order 

Nonequilibrium order Military conflicts, by their nature, proceed far from 
equilibrium; understanding how combat unfolds is more 
important that knowing the "end state" 

Adaptation 
In order to survive, combat forces must continually adapt 
to a changing environment, and continually look for 
better ways of adapting to the adaptation pattern of their 
enemy 

Collectivist dynamics 
There is a continual feedback between the behavior of 
(low-level) combatants and the (high-level) command 
structure 

Reference [2] introduces a convenient eight-tier scaffolding on which 
to organize potential applications of nonlinear dynamics and complex 
systems theory to land warfare. This scaffolding includes applications 
that range roughly from those (on Tier I) that involve the least risk but 
are likely to incur the least payoff, to those (on Tier VIII) that involve 
the greatest risk but are also likely to incur the greatest potential payoff 
(see table 2):! 

1      See http://www.marine-ns.cots-q.com/second~l/nsappl~l/eightt~l/eightt.htm. 
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• Tier I: General Metaphors for Complexity in War 

• Tier II: Policy and General Guidelines for Strategy 

• Tier HI: Conventional Warfare Models and Approaches 

• Tier IV: Description of the Complexity of Combat 

• Tier V: Combat Technology Enhancement 

• Tier VI: Combat Aids for the Battlefield 

• Tier VQ: Synthetic Combat Environments 

• Tier "VTA: Original Conceptualizations of Combat. 

For many obvious reasons, the most natural application of complexity 
theory to land warfare is to provide an agent-based simulation of combat. 
That is to say, a Tier-VII application that attempts to model land combat 
as a co-evolving ecology of local-rule-based autonomous adaptive agents 
(see shaded box in table 2). 

Agent-based simulations of complex adaptive systems are predicated on 
the idea that the global behavior of a complex system derives entirely 
from the low-level interactions among its constituent agents. By relating 
an individual constituent of a complex adaptive system to an agent, one 
can simulate a real system by an artificial world populated by interacting 
processes. Agent-based simulations are particularly adept at 
representing real-world systems composed of individuals that have a 
large space of complex decisions and/or behaviors to choose from. 

Motivation 

It is a bit ironic that in this modern age of distributed interactive 
simulations and gigabyte-sized code driving networked 3D virtual-reality 
systems with embedded artificial intelligence, the underlying principles 
of combat attrition calculations in land warfare models remain largely 
unchanged since the turn of the century. Most attrition models still 
depend on some form of Lanchester's equations (see below), even in 
contexts that are wholly inappropriate for their use. 

This study was motivated by two fundamental insights: 

1. The fundamental principles underlying modern land warfare - 
with its general emphasis on maneuver and adaptation - cannot 
be elucidated from the (reductionist-style) analysis of force-on-force 
attrition alone. 
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2. The main lesson from complex systems theory - namely, that 
local nonlinear interaction of many "simple parts" often results 
in "apparently complex" emergent behavior - can be used to 
develop a radically new synthesist approach to understanding the 
fundamental processes of war. 

ISAAC was designed to take a new look at a very old problem by 
exploiting what the "new sciences" have taught us about how global 
patterns often emerge from the collective behaviors of individuals. What 
higher-level phenomena might emerge on the real battlefield out of the collective 
interactions among individual combatants'? 

Table 2. Eight tiers of a pplicability 
Tier of Applicability Description Examples 

Build and continue to expand nonlinear vice linear 
/. General Metaphors for base of images to enhance synthesist vice analytical 

Complexity in War conceptual links between edge-of-chaos vice equilibrium 
complexity and warfare process vice structure 

holistic vice reductionist 

Guide formulation of policy Use general metaphors and 
II. Policy and and apply basic principles and lessons learned from CST to 

General Guidelines metaphors of CST1 to enhance guide and shape policy 
for Strategy and/or alter organizational making; 

structure Use genetic algorithms to 
evolve new organizational 

forms 

III. "Conventional" Warfare Apply tools and methodologies chaos in Lanchester equations 
Models and Approaches of CST to better understand chaos in arms-race models 

and/or extend existing models analogy with ecological models 

IV. Description of the Describe real-world combat power-law scaling 
Complexity of Combat from a CST perspective Lyapunov exponents 

entropic parameters 

Apply tools and methodologies intelligent manufacturing 
V. Combat Technology of CST to certain limited data compression 

Enhancement aspects of combat, such as cryptography 
intelligent manufacturing, IFF 

cryptography and data computer viruses 
dissemination fire ants 

Use CST tools to enhance autonomous robotic devices 
VI. Combat Aids real-world combat operations tactical picture agents 

tactics/strategy evolution via 
GA 

VII. Synthetic Combat Full system models for training agent-based models {SimCity) 
Environments and/or to use as research Soar/IFOR 

"laboratories" SWARM 

VIII. Original Use CST-inspired basic pattern recognition 
Conceptualizations research to develop controlling/exploiting Chaos 

of Combat fundamentally new 
conceptualizations of combat 

Universality? 

CST = Complex Systems Theory 

4 
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Lanchester equations 

In 1914, F. W. Lanchester [3] introduced a set of coupled ordinary 
differential equations - now commonly called the Lanchester Equations 
(LEs) - as models of attrition in modern warfare.2 These equations have 
since venerably served as the fundamental models upon which most 
modern theories of combat attrition are based. For the simplest case of 
directed fire, for example, Lanchester hypothesized that one side's 
casualty rate is proportional to the number of the opposing side's unit 
strength. 

In mathematical terms, let R(t) and B(t) represent the numerical 
strengths of the red and blue forces at time t, respectively, and o^ and CCB 

represent the constant effective firing rates at which one unit of 
strength on one side causes attrition of the other side's forces. Then 
Lanchester's well known directed fire (or square law) model of attrition is 
given by 

ft=-aBB{t), B10) = RQ 

ft=-aRR(t),  B(0) = BQ ' 

where R,, and B0 are the initial red and blue force levels, respectively. 
The closed form solution of these equations is given in terms of 
hyperbolic functions as 

B(t) = i?ocosh yaBaRt J-B0 JaB/aR sinh UaBaRt J 

B(t) = £0cosh yaBaRt J-RQ JaB/aR sinh UaBaRt J 

and satisfies the simple "square-law" state equation 

aR[l$-W)2] = aB[B2
0-B(t)2]. 

Despite the simplicity of this equation (which can be found embedded 
in many large-scale combat models), almost all attempts to correlate 
LE-based models with historical combat data have proven inconclusive, 
a result that is in no small part due to the paucity of data. Most data 
consist only of initial force levels and casualties, and typically for one 
side only. Moreover, the actual number of casualties is usually uncertain 
because the definition of "casualty" varies (killed, killed + wounded, 
killed + missing, etc). 

Two noteworthy battles for which detailed daily attrition data and daily 
force levels do exist are the battle of Iwo Jima in World War II and 
Inchon-Seoul campaign in the Korean War. While the battle of Iwo Jima 

2      Similar ideas were proposed around that time by Chase [4] and Osipov [5]. 
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is frequently cited as evidence for the efficacy of the classic LEs, it must 
be remembered that the conditions under which it was fought were very 
close to the ideal list of assumptions under which the LEs themselves 
are derived. A detailed analysis of the Inchon-Seoul campaign [8] has 
also proved inconclusive. Weiss [9], Fain [10] and others describe 
analyses of battles fought from 200 B.C. to World War II. 

While LEs capture some important basic elements of combat, they apply 
only under a very strict set of assumptions. These assumptions include 
having homogeneous forces that are continually engaged in combat, 
firing rates that are independent of opposing force levels and are 
constant in time, and units that are always aware of the position and 
condition of all opposing units, among many others. Because 
Lanchester's direct-fire equations assume that each side has perfect 
information about where the opposing side's forces are located and 
what opposing force units have been hit, they are models of highly 
organized combat with complete and instantaneous information. 

Figure 1. The force-on-force attrition "challenge" 
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LEs suffer from other fundamental shortcomings, including modeling 
combat as a deterministic process, requiring knowledge of 
"attrition-rate coefficients" (the values of which are, in practice, very 
difficult if not impossible to obtain), an inability to account for any 
suppressive effects of weapons, an inability to account for terrain effects, 
and the inability to account for any spatial variation of forces. Generally 
speaking, Lanchester's equations simply lack the spatial 
degrees-of-freedom needed to model real-world combat. More 
important, they also leave out the all-important human factor; i.e., the 
psychological and/or decision-making capability of the human 
operator. 

When these shortcomings are coupled with the Marine Corps' 
Maneuver-Warfare land combat doctrine - which is fundamentally based 
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on the art of maneuver and adaptation vice pure force-on-force attrition 
[11] - the use of a purely force-on-force-driven analytical methodology 
to describe modern combat begins not just to strain credibility, but to 
literally smack of an oxymoron. The question is, "Is there anything better?" 
Is there a way, perhaps that bucks the conventional way of representing 
land combat? See figure 1. 

While there have been many extensions to and generalizations of 
Lanchester's equations over the years - including their reformulations 
as stochastic differential equations and partial differential equations 
designed to minimize the inherent deficiencies - very little has really 
changed in the way we fundamentally view and model combat attrition. 
However, recent developments in nonlinear dynamics and complex 
systems theory - particularly those in an emerging new field called 
artificial life (see below) - provide a potentially powerful new set of 
theoretical and practical tools to address many of the deficiencies 
mentioned above. These developments provide a fundamentally new 
way of looking at land combat. 

Artificial Life 

Artificial Life (AL), introduced in the quote that appears on the first 
page of this report by Chris Langten,3 is an attempt to understand life as 
it is by examining a larger context of life as it could be. The underlying 
supposition is that life owes at least as much to its existence to the way 
in which information is organized as it does to the physical substance 
(i.e., matter) that embodies that information. Similarly, ISAAC is 
designed to be a tool that can help us understand combat as it is by 
allowing analysts to explore a larger context of combat as it could be. 

The fundamental concept of AL is emergence, or the appearance of 
higher-level properties and behaviors of a system that - while obviously 
originating from the collective dynamics of that system's components - 
are neither to be found in nor are directly deducible from the 
lower-level properties of that system. Emergent properties are 
properties of the "whole" that are not possessed by any of the individual 
parts making up that whole: an air molecule is not a tornado and a 
neuron is not conscious. 

AL thus studies life by using artificial components (such as computer 
programs) to capture the behavioral essence of living systems. The 
supposition is that if the artificial parts are organized correctly, in a way 
that respects the organization of the living system, then the artificial 
system will exhibit the same characteristic dynamical behavior as the 
natural system on higher levels as well. Notice that this bottom-up, 
synthesist approach stands in marked contrast to more conventional 
top-down, analytical approaches.  

3        Chris Langton organized the first international conference on AL in 1987 [12] 
and is currently among AL's conceptual leaders. 
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AL-based computer simulations are characterized by these five general 
properties [12]: 

1. They  are  defined  by populations  of simple  programs  or 
instructions about how individual parts all interact. 

2. There is no single "master oracle" program that directs the 
action of all other programs. 

3. Each program defines how simple entities respond to their 
environment locally. 

4. There are no rules that direct the global behavior. 

5. Behaviors  on  levels  higher  than  individual  programs  are 
emergent. 

Figure 2. Artificial Life: a new approach to the classic force-on-force 
attrition problem? 
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Figure 2 shows, schematically, the form of an artificial-life-based 
"solution" to the force-on-force attrition challenge posed in figure 1. 
The eye in figure 2 symbolizes the importance of emergence in AL 
models, and therefore the need for pattern recognition. 

Fundamentally, the AL-based approach represents a shift in focus from 
"hard-wiring" into a model a sufficient number of (both low- and 
high-level) details of a system to yield a desired set of "realistic" 
behaviors - the rallying cry of such models being "more detail, more detail, 
we need more detail!" 
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to. 

Looking for universal patterns of high-level behavior that naturally and 
spontaneously emerge from an underlying set of low-level interactions 
and constraints - the rallying cry in this case being "allow evolving global 
patterns to emerge on their own from the local rules!" 

Decentralized Self-Organization 

A basic property of many complex systems is decentralized self-organization. 
Not every pattern must be centrally orchestrated. In fact, decentralized 
systems, whose components do not simply follow rules that are passed 
down echelon from some higher "authority" possessed of a more global 
perspective (and instead assimilate and react only to local information), 
often display a self-organized order on the macro-scale. 

To motivate the discussion of ISAAC, we present three simple examples 
of decentralized self-organization: (1) the space-time patterns of 
cellular automata, (2) the flocking of birds, and (3) a collective sorting 
program based on the foraging patterns of ants. Other examples 
include the colorful dynamical spirals of the Belousov-Zhabotinski 
chemical reaction, the functioning of the human immune system, and 
patterns of traffic flow that arise from purely local interactions among 
individual cars (see [1]). The program that is the subject of this report, 
ISAAC, was essentially developed to address this basic question: "To 
what extent is combat a self-organized emergent phenomenon ?" 

Cellular Automata 

One-dimensional cellular automata are simple discrete dynamical 
systems consisting of a single "line" of cells.4 Each cell has a "value" 
(either one or zero) that changes in discrete time steps depending on 
what that cell's value was on the previous time step and what values that 
given cell's left- and right-neighbors had on the previous time step. A 
cellular automata rule is an explicit prescription of this functional 
dependency. A space-time diagram for this rule consists of stacking the 
entire row of cells at successive time steps on top of one another (with 
the color black representing cell value 1, and the color white 
representing cell value 0). 

To illustrate how even "simple rules" acting on the micro-scale can give 
rise to "complicated dynamics" on the macro-scale, consider the 
one-dimensional cellular automaton rule defined at the top of figure 3. 
Its space-time evolution, starting from a random initial state, is shown at 
the bottom of the figure. Note that this space-time pattern can be 
described on two different levels: either on the cell-level, by explicitly 
reading off the values of the individual cells, or on a higher-level by 

4      A short primer on cellular automata is given in Appendix A. 
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describing it as a sea of particle-like structures superimposed on a 
periodic background. In fact, following a small initial transient period, 
temporal sections of this space-time pattern are always of the form 
"...BBBBPBB...BB... BBBP'BB...BBBP"BBB...", where "B" is a state of the 
periodic background consisting of repetitions of the sequence 
"10011011111000" (with spatial period 14 and temporal period 7), and 
the P's represent "particles." The particle pattern P = "11111000", for 
example, repeats every four steps while being displaced two cells to the 
left; the particle P = "11101011000" repeats every ten steps while being 
displaced two cells to the right. 

Figure 3. Evolution of a one-dimensional CA starting from a random 
initial state 
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Although the underlying dynamics describing this system is very simple, 
and entirely deterministic, there is an enormous variety, and 
complexity, of emergent particle-particle interactions. Such simple 
systems are powerful reminders that complex higher-level dynamics 
need not have a complex underlying origin. Indeed, suppose that we 
had been shown such a space-time pattern but were told nothing 
whatsoever about its origin. How would we make sense of its dynamics? 
Perhaps the only reasonable course of action would be to follow the 
lead of any good experimental particle-physicist and begin cataloging 
the various possible particle states and interactions: there are N particles of 
size s moving to the left with speed v, when a particle p of type P collides with q of 
type Q, the result is the set of particles {pp ..., pj; and so on. It would take a 
tremendous leap of intuition to fathom the utter simplicity of the real 
dynamics. 

10 
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"Boids" 

One of the most breathtakingly beautiful displays of nature is the 
synchronous, fluid-like flocking of birds. It is also an excellent example 
of emergence in complex systems. Large or small, the magic of flocks is 
the very strong impression they convey of some intentional centralized 
control directing the overall traffic. Though ornithologists still do not 
have a complete explanation for this phenomenon, evidence strongly 
suggests that flocking is a decentralized activity, where each bird acts 
according to its local perceptions of what nearby birds are doing. 
Flocking is therefore a group behavior that emerges from collective 
action. 

Craig Reynolds [13] programmed a set of artificial birds — which he 
called boids — to follow three simple local rules: 

• Rule 1:    maintain a minimum distance from other objects 
(including other boids) 

• Rule 2:    match the velocity of nearby boids 

• Rule 3:    move toward the perceived center of nearby boids. 

Each boid thus "sees" only what its neighbors are doing and acts 
accordingly. Reynolds found that the collective motion of all the boids 
was remarkably close to real flocking, despite the fact that there is 
nothing explicitly describing the flock as a whole. The boids initially 
move rapidly together to form a flock. The boids at the edges either 
slow down or speed up to maintain the flock's integrity. If the path 
bends or zigzags in any way, the boids all make whatever minute 
adjustments need to be made to maintain the group structure. If the 
path is strewn with obstacles, the boids flock around whatever is in their 
way naturally, sometimes temporarily splitting up to pass an obstacle 
before reassembling beyond it. There is no central command that 
dictates this action. 

Reynolds' Boids is a good example of decentralized order not because 
the boids' behavior is a perfect replica of the flocking of birds that 
occurs in nature — although it is a close enough match that Reynold's 
model has attracted the attention of professional ornithologists — but 
that much of the boids' collective behavior is entirely unanticipated, 
and cannot be easily derived from the rules defining what each 
individual boid does. 

In the same way, the boid-like program described in this paper can be 
used to show that certain aspects of land combat can be viewed as 
emergent phenomena resulting from the collective, nonlinear, 
decentralized interactions among elementary "combatants." 
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Collective Sorting 

Deneubourg, et al. [14], have introduced a simple distributed sorting 
algorithm that is inspired by the self-organized way in which ant 
colonies sort their brood. 

Implemented by robot teams, their algorithm has the robots move 
about a fenced-in environment that is randomly littered with objects 
that can be scooped up. These robots (1) move randomly, (2) do not 
communicate with each other, (3) can perceive only those objects 
directly in front of them (but can distinguish between two or more 
types of objects with some degree of error), and (4) do not obey any 
centralized control. The probability that a robot picks up or puts down 
an object is a function of the number of the same objects that it has 
encountered in the past. 

Coordinated by the positive feedback these simple rules induce between 
robots and their environment, the result, over time, is a seemingly 
intelligent, coordinated sorting activity. Clusters of randomly 
distributed objects spontaneously and quite naturally emerge out of a 
simple set of autonomous local actions having nothing at all to do with 
clustering per se; see figure 4. 

Figure 4. Collective sorting by ant-like robots 
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The authors suggest that this system's simplicity, flexibility, error 
tolerance, and reliability compensate for their lower efficiency. While 
one can argue that this collective sorting algorithm is much less 
efficient than a hierarchical one, the cost of having a hierarchy is that 
the sorting would no longer be ant-like but would require a god-like 
oracle analyzing how many objects of what type are where, deciding 
how best to communicate strategy to the ants. Furthermore, the ants 
would require some sort of internal map, a rudimentary intelligence to 
deal with fluctuations and surprises in the environment (what if an 
object was not where the oracle said it would be?), and so on. In short, a 
hierarchy, while potentially more efficient, would of necessity have to be 
considerably more complex as well. The point Deneubourg, et al. are 
making is that a much simpler collective decentralized system can lead 
to seemingly intelligent behavior while being more flexible, more 
tolerant of errors, and more reliable than a hierarchical system. 
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Agent-Based Models 

Agent-based simulations of complex adaptive systems are predicated on 
the idea that the global behavior of a complex system derives entirely 
from the low-level interactions among its constituent agents. Lessons 
about the real-world system that an agent-based simulation is designed 
to model can be learned by looking at the emergent structures induced 
by the interaction processes taking place within the simulation. 

The purpose behind building agent-based simulations is twofold: it is to 
learn both the quantitative and qualitative properties of the real system. 
Agent-based simulations are well suited for testing hypotheses about the 
origin of observed emergent properties in a system. This can be done 
simply by experimenting with sets of initial conditions at the micro-level 
necessary to yield a set of desired behaviors at the macro-level. On the 
other hand, they also provide a powerful framework within which to 
integrate ostensibly "disjointed" theories from various related 
disciplines. For example, while basic agent-agent interactions may be 
described by simple physics and sociology, the internal decision-making 
capability of a single agent may be derived, in part, from an 
understanding of cognitive psychology. 

The fundamental building block of most models of complex adaptive 
systems is the so-called adaptive autonomous agent. Adaptive 
autonomous agents try to satisfy a set of goals (which may be either 
fixed or time-dependent) in an unpredictable and changing 
environment. These agents are "adaptive" in the sense that they can use 
their experience to continually improve their ability to deal with 
shifting goals and motivations. They are "autonomous" in that they 
operate completely autonomously, and do not need to obey instructions 
issued by a God-like oracle. 

Depending on the system being modeled and the environment that an 
agent populates, an adaptive autonomous agent can take on many 
different forms. In Deneubourg et al.'s [14] study of decentralized 
collective sorting, for example, the agents of the system are simple 
(norzadaptive) robots that move about their physical environment and 
make elementary decisions about whether to pick up or drop an object. 
Examples of adaptive agents populating "cyberspace" are the so-called 
"software agents" (or "knobots") that are entities that navigate computer 
networks or cruise the World-Wide-Web searching for relevant bits of 
data- 

in general, an adaptive autonomous agent is characterized by the 
following properties: 

• It is an entity that, by sensing and acting upon its environment, 
tries to fulfill a set of goals in a complex, dynamic environment. 
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• It can sense the environment through its sensors and act on the 
environment through its actuators. 

• It has an internal information processing and decision-making 
capability. 

• Its anticipation of future states and possibilities, based on 
internal models (which are often incomplete and/or incorrect), 
often significantly alters the aggregate behavior of the system of 
which an agent is part. 

• An agent's goals can take on diverse forms: 

• Desired local states 

• Desired end goals 

• Selective rewards to be maximized 

• Internal needs (or motivations) that need to be kept within 
desired bounds. 

Since a major component of an agent's environment consists of other 
agents, agents generally spend a great deal of their time adapting to the 
adaptation patterns of other agents. The adaptive mechanism of an 
adaptive autonomous agent is typically based on a genetic algorithm.5 

Insofar as complex adaptive systems can be regarded as being essentially 
open-ended problem-solvers, their lifeblood consists mostly of novelty. 
The ability of a complex adaptive system to survive and evolve in a 
constantly changing environment is determined by its ability to 
continually find — either by chance, or experience, or more typically 
both — insightful new strategies to increase its overall "fitness" (which is, 
of course, a constantly changing function in time). 

Military campaigns likewise depend on the creative leadership of their 
commanders, success or failure often hinging either on the brilliant 
tactic conceived in the heat of combat or the mediocre one issued in its 
place. 

To be realistic, such novelty must not consist solely of a randomly 
selected option from a main-options list (a common approach taken by 
conventional warfare models), but must at least have the possibility of 
being as genuinely unanticipated in the model as it often is on a real 
battlefield. To this end, each command-agent (and to a somewhat more 
limited extent, each primitive agent) must possess both a memory and 
an internal anticipatory mechanism that it uses to select the optimal 
tactic and/or strategy from among a set of predicted outcomes. This is 
an important point: except for doctrine and the historical lessons of 
warfare, the super-set of tactics must not be hard-wired in. 

3      A primer on genetic algorithms is given in Appendix B. 
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Such local-rule-based multiagent simulations are well suited for: 

• Providing a theoretical framework for understanding aggregate 
behavior as fundamentally nonlinear and synergistic 

• Studying the general efficacy of combat doctrine and tactics 

• Exploring emergent properties and/or other "novel" behaviors 
arising from low-level rules (even doctrine if it is well encoded6) 

• Capturing universal patterns of combat behavior by focusing on 
a reduced set of critical drivers 

• Suggesting likelihood of possible outcomes as a function of 
initial conditions 

• Use as training tools along the lines of some commercially 
available agent-based "games," such as SimCity, SimFarm, and 
SirnLife1 

• Providing near-real-time tactical decision aids by providing a 
"natural selection" (via genetic algorithm) of superior tactics 
and/or strategies for a given combat situation 

• Providing a natural arena in which to explore consequences of 
various qualitative characteristics of combat (unit cohesion, 
morale, leadership, etc.) 

• Giving an intuitive "feel" for how and/or why unanticipated 
events occur on the battlefield, and to what extent the overall 
process is shaped by such events. 

Ideally, one would hope to find universal patterns of behavior and/or 
tactics and strategies that are independent of the details of the make up 
of individual combat agents. 

Agent-based simulations ought not be used either to predict real 
battlefield outcomes or to provide a realistic simulation of combat. 
While commercial networkable 3D virtual-reality games such as Quake8 

are much better suited to providing a virtual combat environment for 
training purposes, agent-based simulations are designed to help 
understand the basic processes that take place on the battiefield. It is 
not realism, for its own sake, that agent-based simulations are after, but 

6 It is an intriguing speculation that doctrine as a whole may contain both desirable 
and undesirable latent patterns that emerge only when allowed to "flow" through a 
system of elementary agents. An agent-based model of combat may provide an ideal 
simulation environment in which to explore such possibilities. 
7 W. Wright, SimCity (computer game), Orinda, California: Maxis Corporation, 
1989. 
8 Id Software, World-Wide Web URL link = http://www.idsoftware.com. 
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rather a realistic understanding of the drivers (read: interactivity, 
decision-making capability, adaptability, and so on) behind what is 
really happening. 

Recent Examples of Agent-Based Simulations 

As fundamental research on complex systems grows, and its set of 
associated theoretical and/or exploratory tools is refined, the use of 
agent-based simulations can only become more widespread. Some of 
the more recent examples of agent-based simulations include Chris 
Barrett's TRANSIM model of traffic flow [15] (in which Albuquerque's 
road-traffic network is meticulously reproduced, boulevard by 
boulevard, and the simultaneous actions of many agent-drivers are used 
to explore countless "What iß" scenarios) and Epstein and Axtell's 
Sugarscape model of the evolution of social systems [16] (in which 
cultural evolution is studied by observing the collective behavior of 
many interactive agents, each endowed with a notional set of social 
interaction rules). Much attention has also been recently focused on 
developing intelligent software agents to help assimilate the 
exponentially growing information on the World-Wide-Web (see, for 
example, Maes [17]). 

SWARM, Santa Fe Institute's SWARM project, headed by Chris 
Langton,9 is a multiagent meta-simulation platform for the study of 
complex adaptive systems. The goal of the project is to provide the 
research community with a general-purpose artificial-life simulator. The 
system comes with a variety of generic artificial worlds populated with 
generic agents, a large library of design and analysis tools, and a 
"kernel" to drive the actual simulation. These artificial worlds can vary 
widely, from simple 2D worlds in which elementary agents move back 
and forth, to complex multidimensional "graphs" representing 
multidimensional telecommunication networks in which agents can 
trade messages and commodities, to models of real-world ecologies. 

As SWARM was only in the initial stages of beta-testing at the 
conception of this project, ISAAC was coded in the C programming 
language to reduce development time. As the list of SWARM features 
continues to increase, however, and as SWARM itself matures as a 
bona-fide research vehicle, future versions of ISAAC may be written for 
SWARM. Ultimately, ISAAC may become a full fledged "combat 
programming language" (i.e., a Mathematical for combat). 

Agent-Based Simulations vs. Traditional Modeling Approaches 

Fundamentally, an agent-based approach to modeling complex systems 
differs from more traditional differential-equation based approaches in 

9 World-Wide-Web URL link = http://www.santafe.edu/prqjects/swarm/. 
10 World-Wide-Web URL link = http://www.wri.com. 
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that it represents a shift from force-on-force attrition calculations to 
considering how high-level properties and behaviors of a systems 
emerge out of low-level rules. The conceptual focus of agent-based 
models shifts from finding a mathematical description of an entire 
system to a low-level rule-based specification of the behavior of the 
individual agents making up that system. 

Table 3 compares the traditional reductionist approach to modeling 
complex systems with complex adaptive system/agent-based 
simulations. 

Table 3. Comparison between traditional and agent-based approaches 
to complex systems modeling 

Traditional (Reductionist) 
Approach 

Agent-Based Simulation 

degrees-of-freedom relatively few typically many 

interactions 
typically weak and linear; need to 

be hard-wired into model 
usually strong and nonlinear; 

low-level agents continually adapt 
to a changing environment 

characteristic length and 
time scales 

=1 >>1 

specification of complex 
boundary conditions 

can be difficult to specify 
analytically (say, as part of a partial 

differential equation model) 
very easy to implement 

model of individual 
combatant? 

necessarily crude; assumes that all 
combatants are the same 

more realistic; each combatant has 
its own unique history and 

therefore its own unique way of 
responding to the world 

aggregation of variables simpleminded aggregation of 
low-level variables 

sets of high-level variables are 
self-organized and emergent; 

aggregate behavior is 
fundamentally nonlinear and 

synergistic 

long term behavior solve for steady-state equilibrium 
solution 

nonequilibrium behavior is more 
descriptive of long-term dynamics 

sought-f or behavior 
is either accounted for explicitly or 

is typically absent; focuses on 
force-on-force attrition ratios 

high-level behavior (not accounted 
for directly) emerges naturally from 
low-level rules; focuses more on the 

overall attrition process 

Agent-Based Simulations vs. Traditional Artificial Intelligence 

"It is hard to point at a single component [of an AI program] as the seat of intelligence, 
there is no homunculus. Rather, intelligence emerges from the interactions of the 
components of the system. The way in which it emerges, however, is quite different for 
traditional and behavior-based AI systems." [18] 

At first sight, the kinds of problems best suited for agent-based 
simulations appear to be similar to the kinds of problems for which 
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traditional artificial intelligence (AI) techniques have been developed. 
How is an agent-based simulation different from a traditional artificial 
intelligence approach? Maes [19] lists four key points that distinguish 
traditional AI from the study of adaptive autonomous agents: 

1. Traditional AI focuses on systems exhibiting isolated 
"high-level" competencies, such as medical diagnoses, chess 
playing, and so on; in contrast, agent-based systems target 
lower-level competencies, with high-level competencies 
emerging naturally, and collectively, of their own accord. 

2. Traditional AI has focused on "closed systems" in which the 
interaction between the problem domain and the external 
environment is kept to a minimum; in contrast, agent-based 
systems are "open systems," and agents are directly coupled with 
their environment. 

3. Most traditional AI systems deal with problems in a piecemeal 
fashion, one at a time; in contrast, the individual agents in an 
agent-based system must deal with many conflicting goals 
simultaneously. 

4. Traditional AI focuses on "knowledge structures" that model 
aspects of their domain of expertise; in contrast, an agent-based 
system is more concerned with dynamic "behavior producing" 
modules. It is less important for an agent to be able to address a 
specific question within its problem domain (as it is for 
traditional AI systems) than it is to be flexible enough to adapt 
to shifting domains. 
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Overview of ISAAC 

What is ISAAC? 

ISAAC is an acronym for Irreducible Semi-Autonomous Adaptive 
Combat, and represents (in its current form) a skeletal agent-based 
model of combat." ISAAC'S discrete, local-rule-based nonlinear 
dynamics is patterned loosely after two-dimensional cellular automata 
rules, with one major difference. In contrast to cellular automata 
models,12 in which it is typically information that moves throughout the 
lattice with the sites themselves remaining fixed, ISAAC allows certain 
privileged kinds of sites (to be described below) to move throughout 
the lattice and to carry information with them. For that reason, ISAAC 
can be thought of as a mobile cellular automata model. 

Mobile cellular automata have been used before to model 
predator-prey interactions in natural ecologies [20 through 22]. They 
have also been applied to combat modeling [23], but in a much more 
limited fashion than the one ultimately envisioned for ISAAC. The goal 
is for ISAAC to become a fully developed complex systems theoretic 
analyst's toolbox for identifying, exploring, and possibly exploiting 
emergent collective patterns of behavior on the battlefield. 

ISAAC currently consists of four separate programs (see table 4): an 
interactive Core Engine that incorporates all of the behavioral and 
dynamical features that are described below (ISAAC_CE), a standalone 
Genetic Algorithm Evolver13 that uses a slightly older version of ISAAC to 
evolve force characteristics that are "best-fit" for performing user-defined 
missions (ISAAC_GA), a single-squad version of the core engine that 
can be used to run and display data files generated by ISAAC_GA 
(ISAAC_SQ), and a Parameter-Space Mapper that also uses a slightly older 
version of ISAAC to map out the behavior of a system over a 
two-dimensional "slice" of ISAAC'S total N-dimensional phase space 
(ISAAC_PM). Each of these programs will be described in detail in the 
following sections. The accompanying diskette also contains the 
program ISAAC_PB that can be used to "play-back" the recorded runs 
described in the Sample Runs section. A user's guide for ISAAC_GA 
appears in the section Genetic Algorithm Evolutions of ISAACA 
Personalities. ISAAC_PM is discussed in Taking 2D "Slices" of ISAAC'S 
Parameter Space in the Data Collection section. 

11 Apart from its descriptive value, the acronym ISAAC was chosen to pay 
tongue-in-cheek homage to Isaac Newton. It seemed an appropriate choice to make 
given that the "new" (complex systems theoretic) sciences represent a fundamental 
shift away from linear (or so-called "Newtonian") thinking. Newton was, in fact, well 
aware of nonlinearities and their implications. 
12 For a brief primer on cellular automata, see appendix A of this report. 
13 For a brief primer on genetic algorithms, see appendix B of this report. 
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Table 4. A listing of program "modules" making up ISAAC 

Program      Version Decription 

ISAAC_CE 1.8.4 Thv iullv interactive (multi-squad version of the) 
Cpre Engine that includes all of the features 
described in. this CRM 

ISAACLSQ      1.7.4 

ISAAC_GA      1.5.1 

ISAAC PM      1.2.1 

ISAAC PB 1.0.1 

The single-squad version of the core engine that 
can be used to display files gnerated by 
ISAAC_GA 

A stand-alone Genetic Algorithm Evolver that uses 
the core engine to evolve personalities "best-fit" to 
perform a specified mission 

A stand-alone Parameter-Space Mapper that uses 
the core engine to "map-out" the behavior over a 
user-defined two-dimensional slice of ISAAC'S 
total N-dimensional phase-space 

A stand-alone program that can be used to 
Play-Back peviously recorded runs; in particular, 
all of the *.out files on the distribution diskette 

ISAAC can therefore be used in three different run "modes": 

• Interactive Mode, in which ISAAC_CE (or ISAAC_SQ) is run 

interactively using a fixed set of rules. This mode, which allows 

the user to make 'on-the-fly' changes to the values of any (or all) 

parameters defining a given run (including the "decision-making 

personality" of individual ISAACAs), is particularly well suited for 

quickly and easily playing multiple "What iß" scenarios. This 

purely graphical run mode is also useful for interactively 

"searching" for interesting emergent behavior. 

• Data-Collection  Mode,   in  which  ISAAC_CE,   ISAAC_SQ,   or 

ISAAC_PM are used to summarize entire runs by sets of various 

statistical measures. In particular, ISAAC_PM can be used to 

gain insight into what ISAAC'S ostensibly N-dimensional 

parameter space looks like (modulo some well-defined mission 

"objective") by generating complete behavioral profiles on two 

dimensional slices ofthat parameter space. 

• GA-"Evolver" Mode, in which ISAAC_GA is used to evolve a 

personality for one side that is "best" suited for performing some 

well-defined mission against a fixed personality (and force 

disposition) for the other. While ISAAC_GA's current design is 

itself evolving (its embedded genetic algorithm, for example, is 

very simple at this stage and can be improved considerably), it is 
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powerful enough to illustrate how programs such as this can 
eventually be used to evolve real-world "tactics." 

Keep in mind that while ISAAC is already arguably rich in structure and 
function, ISAAC is still very much a "work in progress." This report (and 
the accompanying programs) should therefore be viewed as preliminary 
work only. In particular, many of ISAAC'S basic algorithms, behavioral 
rules, command and control structures, and data-collection routines are 
all subject to change. 

What is an ISAACA? 

The basic element of ISAAC is an ISAAC Agent (or ISAACA), which 
loosely represents a primitive combat unit (infantryman, tank, transport 
vehicle, etc.) that is equipped with the following characteristics: 

• A default local-rule set specifying how to  act in  a generic 
environment (i.e., an embedded "doctrine") 

• Goals directing behavior ("mission") 

• Sensors generating an internal map of environment ("situational 
awareness") 

• An internal adaptive mechanism to alter behavior and/or rules. 

A global rule set determines combat attrition, reconstitution and (in 
future versions) reinforcement. ISAAC also contains both local and 
global commanders, each with their own command radii, and obeying 
an evolving C2 hierarchy of rules. 

ISAAC possesses the following general characteristics: 

1. All low-level combatants respond to strictly local forms of 
information. 

2. All local decision-dynamics is decentralized and personality driven; 
that is, driven by individual goals and motivations. 

3. Local dynamics is adaptivea.no. nonlinear. 

4. The generic "template" of decision-making is consistent among 
the various levels of decision-making (that range from low-level 
ISAACAs to local commanders to global commanders to the 
super commander). 
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ISAAC is local because each ISAACA senses, reacts, and adapts only to 
information existing within a prescribed finite sensor range. It is 
decentralized because there is no master "oracle" dictating the actions of 
each and every ISAACA. Instead, each ISAACA senses, assimilates, and 
reacts to all information individually and without guidance. It is 
nonlinear because of the nonlinear nature of the local decision-making 
process that each ISAACA uses to choose a "move." It is adaptive because 
each ISAACA adaptively changes its default ("doctrinal") rules 
according to its local environment at each time step. There is thus a 
continual dynamical feedback between the local and global levels. The 
manner in which its rules are changed proceeds according to each 
ISAACA's personality, or its intrinsic value system. Each of these points is 
discussed in more detail below. 

ISAAC'S basic approach is similar in spirit to a cellular automaton (CA) 
model but augments the conventional CA framework in two ways: (1) 
individual units can move through the lattice (recall that in CA, what 
moves is the information, not the site), and (2) evolution proceeds not 
according to a fixed set of rules, but to a set of rules that adaptively 
evolves over time. When the appropriate internal flags are set to make 
use of a hierarchical command and control structure, ISAAC differs 
from conventional CA models in one additional way: individual states of 
cells (or combatants) do not just respond to local information, but are 
capable of assimilating nonlocal information (via an embedded C2 

topology) and command hierarchy. In future versions, global rule (i.e., 
command) strategies will evolve in time (say, via a genetic algorithm). 
In this case, orders pumped down echelon will be based on evolved 
strategies played out on possibly imprecise mental maps of local and/or 
global commanders. Thus, ISAAC will be an ideal test-bed in which to 
explore such questions as "What is the tactical and/or strategic impact of 
information?" 

Design Philosophy 

ISAAC has been developed primarily to address the basic question: "To 
what extent is land combat a self-organized emergent phenomenon?" As such, its 
intended use is not as a full system-level model of combat but as an 
interactive toolbox (or "conceptual playground") in which to explore 
high-level emergent behaviors arising from various low-level (i.e., 
individual combatant and squad-level) "interaction rules." The idea 
behind ISAAC is not to model in detail a specific piece of hardware 
(M16 rifle, M101 105mm howitzer, etc.), but to provide an 
understanding of the fundamental behavioral tradeoffs involved among 
a large number of notional variables. ISAAC is designed to be an 
interactive dynamical arena in which the user can explore various "What 
if?" scenarios of the form: "What if blue's sensor range is halved but its fire 
power is doubled?", "What if the enemy is a much more 'aggressive' force than 
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anticipated?", "What if reinforcements are added to a force whose combat 
personalities are 'at odds' with the personality of the existing force'?", etc. 

Information Levels 

Figure 5 shows a schematic of ISAAC'S hierarchy of information levels. 
The details of these levels will be given in appropriate sections that 
follow; here, we describe only those basic aspects of these levels that are 
relevant for illustrating ISAAC'S overall design philosophy. 

Figure 5. Schematic of ISAAC'S hierarchy of information levels 

Supreme Command (SC) Level 
SC defines each scenario 

SC defines global combat parameters 
SC specifies "mission objectives" 

Global Command (GC) Level 
GCs define interaction among subordinate LCs 

GCs use "global" (i.e. battlefield-wide) information 
GCs' decisions are driven by personality-weights 

Local Command (LC) Level 
LC:LC interactions 

LCs issue "orders" to subordinate ISAACAs 
LCs use the combined "information" fields 

of their subordinate ISAACAs 
LCs' decisions are driven by personality-weights 

Individual Combatant Level 
ISAACAs respond to purely "local" information 
Personality-driven ISAACA: ISAACA interactions 

The lowest level of the hierarchy is the level of the individual 
combatant, or ISAACA, and consists of all information contained within 
the notional battlefield that an individual ISAACA can sense and react 
to; namely, friendly and enemy ISAACAs, and proximity to "goals" (see 
below) and/or terrain. This lowest level is the one on which the 
dynamical interactions between ISAACAs occur. 

The next two levels are command levels that consist of information 
pertinent to making "decisions" regarding the behavior on lower levels. 
Local commanders, for example, assimilate and respond to a "pool" of 
mid-level information consisting partly of the information contained 
within their own field-of-view (which typically extends beyond that of a 
single ISAACA) and partly of the information communicated to them 
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by their subordinate ISAACAs. Local commanders use this mid-level 
information to adjust the movement vectors of the individual ISAACAs 
under their command. Global commanders use global (i.e., 
battlefield-wide) information to issue movement vectors to local 
commanders (and, therefore, their subordinate ISAACAs) as well as to 
define how the subordinate ISAACAs under the command of one local 
commander are to interact with the subordinate ISAACAs under the 
command of another local commander. 

Finally, the top-level supreme commander represents the interactive 
user of the software. The user is responsible for completely defining a 
given scenario, fixing the size and features of the notional battlefield, 
setting the initial force dispositions, and specifying any auxiliary combat 
conditions (such as fratricide, reconstitution, combat termination 
conditions, and so on). The supreme commander also defines the 
"mission objective" required by the standalone genetic algorithm 
(ISAAC_GA) and parameter-space mapper (ISAACA_PM) programs. 

Guiding Principles 

ISAAC'S design philosophy is grounded upon two guiding principles: 
(1) keep all dynamical components and rules as simple as possible, and 
(2) treat all forms of information (and the way in which all forms of 
information are assimilated) equally, but in a contextually consistent 
manner. 

The first principle refers to a concerted effort to adhere to a relatively 
small set of basic combat and movement rules, and to define those rules 
as intuitively as possible. Thus, the power projection rule is essentially 
"target and fire upon any enemy ISAACA within a threshold fire range" vice 
some other, more complicated (albeit, a possibly more realistic) 
prescription. Remember that the idea is to qualitatively probe the 
behavioral consequences of the interaction among a large number of 
notional variables, not to provide an explicit detailed model of combat. 

The second principle refers to the fact that almost all dynamical 
"decisions" in ISAAC - whether they are made by individual ISAACAs, 
by local or global commanders, or by the user himself (in defining a 
scenario's "mission objectives") - are personality driven. That is to say, all 
decisions are based on what might loosely be called a "personality" that 
attaches greater or lesser degrees of importance to each factor relevant 
to making a particular decision. It is in this sense that all forms of 
information, on all levels, are treated equally. Because decisions on 
different levels necessarily involve different kinds of information - for 
example, an individual ISAACA's decision to "stay put" in order to 
survive is quite different, and uses a different kind of information, from 
a global commander's drive to "get to the enemy flag as quickly as 
possible" - one must be careful to use whatever information must be 
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used for a decision on a given level in a manner that is appropriate for 
that level. 

The decision-dynamics taking place on different levels are all mutually 
consistent in that each decision-maker (whether it is an individual 
ISAACA, a local or global commander) follows the same general 
template of probing and responding to his environment. Each decision 
really consists of answering the following three basic questions: 

• Question 1: What are my immediate and/or long-term goals? 

• Question 2: What do I currently sense in (and/or know about) my 
environment? 

• Question 3: How can I use what I currently know of my environment to 
attain my goals? 

As we shall see in detail below, an individual ISAACA cares only about 
"moving toward" or "moving away from" all other ISAACAs and/or his 
own and the enemy's flag. An ISAACA's personality prescribes how 
much relative weight is assigned to each of these immediate "goals." On 
the other hand, a global commander must weigh such factors as overall 
force strength, casualty rate, rate of advance, and so on in order to 
attain certain long-term goals. Local and supreme commanders have 
their own unique concerns. While the actual decisions are different in 
each case and on each level, the general template of how those 
decisions are made has been designed to be essentially the same. 

Combat Battlefield 

The putative "combat battlefield" is represented in ISAAC by a 
two-dimensional lattice of discrete sites. Each site of the lattice may be 
occupied by one of two kinds of ISAACAs: red or blue. The initial state 
consists of either user-specified formations of red and blue ISAACAs 
positioned at diagonally opposite corners of the batdefield or of a 
random distribution of red and blue ISAACAs occupying the central 
square region (of user-specified dimension). Red and blue "flags" are 
also typically (but not always) positioned in diagonally opposite corners: 
a red flag in the red ISAACAs corner and a blue flag in the blue 
ISAACAs corner. A typical "goal," for both red and blue ISAACAs, is to 
successfully reach the "flag" positioned in the diagonally opposite 
corner (see figure 6). ISAAC also has the provision of defining a 
notional terrain. Future versions will include a menu of environmental 
obstacles as well. 

Each ISAACA exists in one of three states: alive, injured, or dead. Injured 
ISAACAs can (but are not required to) have different personalities from 
when they were alive. By default, an injured ISAACA's ability to shoot an 
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enemy is equal to 1/2 of its ability when alive. Also, if the alive ISAACA 
chooses its moves from among lattice sites within a distance of two or 
more from its current position, an injured ISAACA's move range is 
reduced to the minimum possible range of one unit. 

Figure 6. Putative two-dimensional "Combat Battlefield" in ISAAC 
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Each ISAACA has associated with it a set of ranges, within which it senses 
and assimilates simple forms of local information, and a personality, 
which determines the general manner in which it responds to its 
environment. Ranges and personality are described in more detail 
below. 

Note that while ISAAC is currently designed to accommodate only two 
kinds of forces (red and blue), a notional white force can also be defined 
by exploiting the features of ISAAC'S multi-squad option (see J&4ACA 
Squads). 

The program loops through the following basic steps: 

• Step 1:     Initialize "battlefield" and ISAACA distribution 
parameters 

• Step 2:     Display summary descriptions of red and blue 
ISAACAs 

• Step 3:     Set time counter to 1 

• Step 4:    Adjudicate combat 

• Step 5:     Refresh Battlefield Graphics Display 

26 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

• Step 6:    Adapt personality weight vector for each red and 
blue ISAACA 

• Step 7:    Compute local penalty for each of the possible 
"moves" that each red and blue ISAACA may choose 
to take from its current position 

• Step 8:    Move ISAACAs to their newly selected position 
(some may choose to "do nothing") 

• Step 9:    Go to Step 4 and repeat. 

The most important parts of this skeletal structure are contained in 
steps 4, 6, and 7, or the parts dealing with the adjudication of combat, 
the adaptation of personality weights, and the decision-making process 
that each ISAACA goes through in order to "choose" its next move. 
Before describing the details of what each of these steps involves, we 
must first discuss how each ISAACA partitions its local information. 

ISAACA Ranges 

As noted earlier, each ISAACA can know and respond only to 
information that is local to its immediate position. Figure 7 shows a 
schematic of the five kinds of user-specified ranges that surround each 
ISAACA: 

• Sensor range 

• Fire range 

• Threshold range 

• Movement range 

• Communications Range 

Sensor Range 

Fire Range 

The sensor range (= rs), shown in figure 7 as the outer-most shaded box 
surrounding the ISAACA positioned at the black-colored center site, 
defines the maximum range at which the ISAACA can sense other 
ISAACAs in its neighborhood. Note that this range effectively defines a 
boxed area around the ISAACA and not a circle of radius rs. 

The fire range (= rF) defines the boxed area surrounding an ISAACA 
within which the ISAACA can engage enemy ISAACAs in combat (see 
discussion below). Any enemy ISAACA that is closer to a given ISAACA 
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than the given ISAACA's fire range may be fired upon by the given 
ISAACA. 

Figure 7. Various kinds of ranges that surround each ISAACA 
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The threshold range (= rT) defines a boxed area surrounding an ISAACA. 
with respect to which that ISAACA computes the numbers of friendly 
and enemy ISAACAs that play a role in determining what move to make 
on a given time step. This local decision-making process is described 
below. 

Movement Range 

The movement range (= rM) defines a boxed area surrounding an ISAACA 
that defines the region of the lattice from which the ISAACA can select 
a move on a given time step. In the current version of ISAAC, rM = 1 or 
2, and each ISAACA can select to either "do nothing" (that is, remain 
where it is) or move to an adjacent lattice site. 

Communications Range 

The communications range (= rc) defines a boxed area surrounding an 
ISAACA such that any friendly ISAACA within a range rc of that 
centrally located ISAACA communicates the information content of its 
local sensor field. How the centrally located ISAACA makes use of that 
information is discussed in a later section. 

Note that while figure 7 shows these four ranges in the particular order 
rc > rs > rF > rT > rM, the user can specify any ordering. 
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ISAACA Personalities 

The personality of an ISAACA X represents X's internal value-system as 
applied to the set of all possible relevant information that X must use to 
select a move or strategy. It is defined by a personality weight vector. 

Personality Weight Vector 

Each ISAACA is equipped with a user-specified "personality," defined by 
a six-component personality weight vector, 

w=(wi,W2,...,w&) 

where 0 < |wz| < and 2/ |WJ| = • The components of the personality 
weight vector specify how an individual ISAACA responds to distinct 
kinds of local information within its sensor and threshold ranges. 

The personality weight vector may be state-dependent. That is to say, 
w(alive) need not. in general, be equal to w(injured). The components 
of w can be also negative, in which case they signify a propensity for 
moving away from, rather than toward, a given entity. 

The default personality rule structure is defined as follows. Since there 
are two kinds of ISAACAs (red and blue), and each functioning (i.e., 
non-dead) ISAACA can exist in one of two states (alive and injured), 
each ISAACA can respond to effectively four different kinds of 
information appearing within its sensor range rs: 

• The number of alive friendly (i.e., like-colored) ISAACAs, 

• The number of alive enemy (i.e., different colored) ISAACAs, 

• The number of injured friendly ISAACAs, and 

• The number of injured enemy ISAACAs. 

Additionally, each ISAACA can respond to how far it is from both its 
own (like-colored) "flag" and its enemy's "flag." Table 5 summarizes the 
association among the components of the personality weight vector and 
these six kinds of information, and gives examples of defensive and 
offensive personalities. 

The meaning of these components is to be interpreted as follows: wi 

represents the relative weight afforded to moving closer to the i'k type of 
information. 
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Table 5. Components of the personality weight vector w 

Examples 

Personality weight Type of Information Defensive Offensive 

w, alive friendly ISAACAs 30/100 5/100 

w2 alive enemy ISAACAs -10/100 25/100 

w3 injured friendly ISAACAs 40/100 0 

w4 injured enemy ISAACAs 10/100 50/100 

w5 own flag 10/100 0 

w6 enemy flag 0 20/100 

A personality is defined by assigning a weight to each of the six kinds of 
information. For example, one ISAACA might give all its attention to 
like-colored ISAACAs, and effectively ignore the enemy. The personality 
weight vector for such an ISAACA might be given by 
w = (1/3,0,1/3,0,1/3), signifying that this ISAACA gives equal weight 
to moving closer to friendly ISAACAs and the enemy flag. Another 
ISAAC might care only about defending its own goal, and might thus 
have a personality prescribed by w = (0,1/3,0,1/3,1/3,0). More 
"well-rounded" ISAACAs might better distribute their attention to both 
friendly and enemy ISAACAs with, say, a weight vector given by 
w = (1/5,1/5,1/5,1/5,0,1/5). 

An example of a fairly aggressive personality is one whose weight vector 
is given by w = (1/20,5/20,0,9/20,0,5/20). Such a personality is five 
times more "interested" in moving toward alive enemies than it is in 
moving toward alive friendlies (effectively ignoring injured friendlies 
altogether), and is more interested in moving toward injured enemies 
than it is even in advancing toward the enemy flag. An ISAAC that has a 
personality defined by entirely negative weights - say, 
w= (-10,—10,—10,—10,—10,—10) - wants to move away from, rather 
than toward, every other ISAACA and both flags. 

Among the many interesting questions that such a weight specified 
internal value-system immediately suggests is, "What is the "best" 
personality mix to use for a given measure-of-effectiveness?" A 
technique for directly addressing such questions using Genetic Algorithms 
is described in a later section. 

The personality weight vector as defined above fixes the default 
personality of a given ISAACA. That is, it fixes the personality with 
which an ISAACA responds to local information in the absence of other 
constraints. Constraints might include a condition such as clamping a 
given ISAACA's innate desire to "get closer to" friendly ISAACAs once 
the number of surrounding friendly ISAACAs (within the constraint 
range, rc; see above) exceeds a given threshold. Another constraint 
might be for a given ISAACA not to advance toward the enemy flag 
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unless it is surrounded by a threshold number of friendly ISAACAs. 
These and other constraints are discussed in more detail below. 

A given ISAACA's personality weight vector is used to rank the set of 
possible moves that it can choose to take during the current time step. 

Squads 

ISAAC allows the user to define up to 10 different personality weight 
vectors (both alive and injured) for 10 separate squads of ISAACAs. Like 
almost everything else in ISAAC, squads are entirely notional entities 
and refer simply to collections of ISAACAs sharing the same 
personality. Aside from enhancing the innate dynamical richness of 
ISAAC'S general conceptual phase-space in an intuitive way, 
squad-specific parameters can be used to explore such basic "What If?" 
questions of the form "What if I had a just a few more good soldiers?" 

Squad-specific parameters in the current version of ISAAC include 
initial spatial disposition, sensor, fire and movement range, alive and 
injured personality weight vectors, notional defensive strength, 
movement constraint thresholds, single-shot probability and maximum 
target number. (See Contents of Input Data File) 

White Forces 

Having squad-specific parameters available makes it possible to 
effectively populate the notional battlefield with a third white force; i.e., 
one whose personality does not include a motivation factor to move 
toward either red or blue flags. 

ISAACA Move Selection 

In the current version of ISAAC, each ISAACA can choose to move 
from its current position at time t - say, (xt,yt) - to any of the sites that 
are either a distance 1 (if the movement range is equal to rM=l) or 2 (if 
the movement range is equal to rM=2) from (xt,yt); see figure 8. It can 
also select to "do nothing" and remain at its current position. Each site 
of the battlefield lattice may be occupied by at most one ISAACA at a 
given time. 

An ISAACA's personality weight vector is used to rank each possible 
move according to a penalty function. The penalty function effectively 
measures the total distance that the ISAACA will be from other 
ISAACAs (which includes both friendly and enemy ISAACAs) and from 
its own and enemy flags, each weighted according to the appropriate 
component of the personality weight vector, w. An ISAACA moves to 
the position that incurs the least penalty, or the move that best satisfies 
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the  ISAACA's  personality-driven  desire  to   "move  closer  to"   other 
ISAACA's in given states and either of the two flags. 

Figure 8. Set of possible ISAACA moves from its current (x,y) position 
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The general form of the penalty function is given by: 

Z(x,y) =   w^-^AT^^       X      ä[i;(x,y)]    + 
alive red; i 

"^blue^liveblue       X       d[i; (x,y)]    + 
alive blue; i 

-_1 iV7l„,„,        E       d[i;(x,y)]    + w3sred ^injured red 
injured red; i 

^blue^juredblue £        d[i;(x,y)]    + 
injured blue; i 

w5 fi?new[red flag; (x,y)] I ^0ld[red fla§; (x»y)1    + 
w6 Jnew [blue flag; (x,y)] I Jold [blue flag; (x,y)]   , 

where w; are the components of the personality weight vector (see 

ISAACA Personalities), sTe^ = V2 rre(j and ^^lue = V 2 '"blue are red and 

blue scale factors, respectively, d[i; (x,y)] is the distance between the i* 
element of a given sum and the ISAACA positioned at (x,y), N; is the 
total number of elements within the given ISAACA's sensor range, and 
dnew and dold represent distances computed using the given ISAACA's 
new (i.e., candidate move) position and old (i.e., current) position, 
respectively.    For    example,    the    summation X      ^jfojO] 

alive red; i 
appearing at the top of the above expression represents the sum of 
distances from the position (x,y) to all red alive ISAACAs located within 
the sensor range box of position (x,y). In the case of a red ISAACA, this 
sensor range box is defined by sensor range rred s; in the case of a blue 
ISAACA, it is defined by sensor range rblue s. 
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Figure 9. General movement rule 

Move to the square that best satisfies personality-driven 
"desire" to get closer to (or farther away from) friendly 
and enemy ISAACAs and enemy (or own) goal 

A "penalty" is computed for each possible move: Zi; Z,,..., ZN. If the 
movement range rM=l, N=9; if rM=2, N=25. The actual move is the one 
that incurs the least penalty. If there is a set of moves (consisting of more 
than one possible move) that incur exactly the same minimum penalty, 
an ISAAC randomly selects the actual move from among the candidate 
moves making up that set. 

The most general movement rule is summarized in figure 9. 

Example 

Figure 10 shows a portion of the notional battlefield surrounding a red 
ISAACA X positioned at (x,y). There are three red ISAACAs (a,b and c 
at distances Da, Db and Dc from X, respectively) and two blue ISAACAs 
(A and B, at distances DA and DB from X, respectively) within X's sensor 
range. 

Figure 10. Sample penalty calculation 
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Assuming that X's movement range rM=l, X's next move is determined 
by minimizing the penalty Z(x',y') that will be incurred by selecting each 
of the nine nearest neighboring sites, (x = x, y = y) and 
(xf = x± \,yf =y± 1) (shown in gray in figure 10). The penalty is given 
explicitly by 
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J J\  - ,-lfl Z{x',y') = wlS^d[jj[Da + Db+Dc] + 

^2S~ld\X)[DA+DB} + w5 
DR-goal 

\UR-goal J 
+ w6 

J->B-goal 

\UB-goal J 

where DR.goal and D°R ,, are the distances from (x,y) and (x',y') to the 
red goal, respectively, and Dg.goaI and D0^,,^ are the distances from (x,y) 
and (x',y') to the blue goal, respectively. 

Move Sampling Order 

There are two ways in which moves can be sampled during an ISAAC 
run. At the start of each run, a randomly ordered list of red and blue 
ISAACAs is first set up prior to the start of the actual dynamics loop. 
During all subsequent passes, ISAACA moves are then determined 
either by sequencing through the ISAACAs on this list in fixed order, or, 
for better realism, in random order. The user can choose a fixed or 
random sampling order by setting a "move-sampling flag" at run-time 
(See General Battle Parameters in Contents of Input Data File). 

ISAACA Adaptability 

As discussed above, ISAAC has been specifically designed to 
accommodate a personality-based local dynamics. This means that, 
despite changing local environments and conditions, each ISAACA 
responds to what it "senses" round itself according to its own individual 
personality. The term "personality" here is of course used somewhat 
figuratively, as it only loosely refers to what we conventionally mean by a 
human personality. However, it does accurately reflect the individually 
consistent manner in which ISAACA's assimilate and act upon 
information in their sensor fields. One way in which such a consistent, 
but thus far fixed, manner of responding to information can be 
augmented is to allow each ISAACA's personality to adapt to changing 
contexts and/or evolve over time. 

Figure 11. Schematic of ISAACA Mete-Personality 
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Conceptually, the idea is fairly simple. Each ISAACA is equipped not 
only with a fixed default personality (as defined by its personality weight 
vector), but with a set of rules that tell it how to alter its default 
personality according to various environmental conditions. In other 
words, each ISAACA is endowed with a wieta-personality that tells it how 
to adapt its default personality. Figure 11 shows a schematic 
representation of this approach. 

In the current version of ISAAC, each ISAACA "adapts" to its local 
environment in a relatively simple fashion. A typical meta-personality 
consists essentially of altering a few of the components of the default 
personality weight set according to several local threshold constraints, 
measured with respect to a user-specified threshold range (= rT; see 
ISAACA Ranges). 

There are six possible constraints: 

• Advance Constraint 

• Cluster Constraint 

• Combat Constraint 

• Minimum distance to friendly ISAACAs 

• Minimum distance to enemy ISAACAs 

• Minimum distance to own flag. 

Advance Constraint 

Consider the advance constraint. The constraint consists of specifying a 
threshold number of friendly ISAACAs that must be within a given 
ISAACAs constraint range rc in order for that ISAACA to continue 
advancing toward the enemy flag. 

Recall that w6 represents the relative weight that is assigned toward 
"moving closer to" the enemy flag (see table 5). If the actual number of 
neighboring friendly ISAACAs is greater than or equal to the threshold 
value, the given ISAACA uses the default weight +w6 to decide upon its 
next move. However, if the actual number of neighboring friendly 
ISAACAs is less than the threshold value, the given ISAACA decides its 
next move by using - w6 to decide upon its next move. That is, it 
effectively attempts to "move away from" rather than "move closer to" 
the enemy goal. Intuitively, the advance constraint embodies the idea 
that unless a combatant is surrounded by a sufficient number of friendly 
forces, he will not advance toward the goal. 
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Cluster Constraint 

Similarly, the cluster constraint embodies the idea that once an ISAACA is 
surrounded by a sufficient number of friendly forces, that ISAACA will 
no longer attempt to "move closer to" friendly forces. 

The cluster constraint consists of specifying a threshold number of 
friendly ISAACAs that must be within a given ISAACA's constraint range 
rc in order for the given ISAACA to no longer move closer to friendly 
ISAACAs. If the actual number exceeds that threshold, the given 
ISAACA will decide upon its next move using w2 = w3 = 0 (see table 5), 
thereby effectively ignoring nearby friendly forces. 

Combat Constraint 

The combat constraint determines the local conditions for which a given 
ISAACA will choose to move toward or away from possibly engaging an 
enemy ISAACA (see ISAACA Combat below). 

Intuitively, the idea is that if a given ISAACA senses that it has less than 
a threshold advantage of surrounding forces over enemy forces, it will 
choose to move away from engaging enemy ISAACAs rather than 
moving toward (and, thereby, possibly engaging) them. More 
specifically, the combat constraint consists of choosing a threshold 
value of the difference (= Ac) between the number of friendly forces 
contained within the given ISAACAs constraint-range box ( = 
Nfriendly(rc)) and the number of enemy forces contained within the given 
ISAACAs sensor range (= Nenemy(rs)): Ac = NfriendIy(rc) - Nenemy(rs). If the 
actual difference, Aactual, is greater than this threshold advantage, the 
default weight set remains unaffected and the given ISAACA proceeds 
to move toward the enemy. If Aactual is less than Ac, then the given 
ISAACA will decide upon its next move using the weights w2 = - w2 default 

and w4 = - wWault, where w2default and w4default are the default weights for 
moving toward alive and injured enemy ISAACAs (see table 5). A 
laxgepositive combat threshold represents a defensive mannered ISAACA 
force, since such ISAACA's will choose to move away from rather than 
engage an enemy unless they have a strong advantage. A large negative 
combat threshold represents an offensive mannered ISAACA force, since 
such a force will choose to move toward and possible engage an enemy 
even if the relative force strengths overwhelmingly favor the enemy. 

Minimum Local-Distance Constraints 

The last three constraints - minimum distance to friendly ISAACAs, 
minimum distance to enemy ISAACAs and minimum distance to own 
flag - specify distances such that if a given ISAACA ever finds itself at a 
distance less than the threshold distance to the given entity it will choose 
to move away from rather than toward that entity. For example, in the 
case of the minimum distance to friendly ISAACAs, say that threshold 
distance is set to 3. If the given ISAACA finds itself at a distance 5 from a 
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particular friendly ISAACA, this constraint has no effect, and the given 
ISAACA chooses its next move using the appropriate default personality 
weight Wj = wldefauU. However, if the given ISAACA finds itself at a 
distance 2 from another particular friendly ISAACA, the constraint 
induces the given iSAACA to use Wj = -Wj default instead of +wWefault. The 
last constraint, specifying the minimum threshold distance to an 
ISAACA's own flag, can be meaningfully applied only if w5default > 0, 
otherwise it has no effect on ISAACA's decision on where to move. 

Note that unlike the first three constraints (advance, cluster and 
combat) - which determine what weights will be applied to neighboring 
ISAACAs collectively - these last three constraints are applied to 
neighboring ISAACAs individually and locally. That is to say, that the 
decision to use a default personality weight or take its negative is made 
on an individual basis, and is made according to whether each 
neighboring ISAACA is closer to or farther away from the given 
ISAACA than the prescribed threshold distance. This decision is made 
during the calculation of the penalty function and is therefore implicit 
in each of the sums appearing in the previous expression for Z. 

Constraint rules are summarized in figure 12. 

Figure 12. Sample constraint rules 

ADVANCE:   Advance toward enemy goal if and only if 
the number of surrounding friendlies 
exceeds a given threshold 

CLUSTER:   Stop moving toward surrounding friendlies 
if the number of friendlies exceeds a given 
threshold 

COMBAT:   Move toward and engage the enemy if and 
only if the difference between friendly and 
enemy force strengths exceeds a given 
threshold 

ISAACA Combat 

In its current version, ISAAC adjudicates combat in the simplest 
possible manner (see figure 13). During the combat phase of an 
iteration step for the whole system, each ISAACA X (on either side) is 
given an opportunity to "fire" at all enemy ISAACAs Y that are within a 
fire range rF of X's position. If an ISAACA is shot by an enemy ISAACA, 
its current state is degraded either from alive to injured or from injured 
to dead. Once "dead," that ISAACA is permanently removed from 
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further play. The probability that a given enemy ISAACA is "shot" is 
fixed by user specified single-shot probabilities for red-by-blue (pss = prb) 
and blue-by-red (pss = pbr). The single-shot probability for an injured 
ISAACA, pss

injured, is, by default, equal to one half of its single-shot 
probability when it is alive (pjnjured = 1/2 pss

a,ivc). 

By default, all enemy ISAACAs within a given ISAACA's fire range are 
targeted for a possible hit. However, the user has the option of limiting 
the number of simultaneously engageable enemy targets. If this option 
is selected, and the number of enemy ISAACAs within an ISAACA's 
fire-range exceeds a user-defined threshold number (say N), then N 
ISAACAs are randomly chosen from among the ISAACAs in this set. 

This basic combat "logic" may be enhanced (by setting the appropriate 
software "flags" prior to run-time; see User's Guide) by three additional 
functions: 

• Defense, which adds a notional ability to ISAACAs to be able to 
withstand a greater number of "hits" before having their state 
degraded, 

• Reconstitution, which adds a provision for previously injured 
ISAACAs to be reconstituted to their alive state, and 

• Fratricide, which adds an element of realism to ISAAC combat by 
making it possible to inadvertently "hit" friendly forces 

Figure 13. Blue X targets 3 Red ISAACAs, Yp Y2 and Y3 

Defense 

□ :=X's 
fire-range 

Each ISAACA is endowed with a notional defensive capability (i.e., 
"armor") that defines the number of successful "hits" that are required 
to degrade an alive ISAACA to an injured state or remove an injured 
ISAACA from further play. By default the notional defensive strength 
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of all (alive and injured) ISAACAs is equal to 1, meaning that a single 
hit is sufficient to degrade an ISAACAs state. Setting the notional 
defensive strength of one side equal to the total number of iteration 
steps desired for the entire run effectively renders that side impervious 
to enemy fire. 

Reconstitution 

Fratricide 

If the reconstitution flag is set at run time (see User's Guide), each 
ISAACA is endowed with a fixed reconstitution time trecon. This adds the 
logic that if an ISAACA X, after being "hit" by an enemy ISAACA Y (and 
thereby being degraded from an alive to an injured state), is not hit 
during the next trecon iteration steps, X is reconstituted to its alive state. 
Note that setting reconstitution time to trecon = 0 is effectively equal to 
having an infinite notional defense, since an ISAACA that is "hit" by the 
enemy is immediately reconstituted. 

If the fratricide flag is set at run time (see User's Guide), every potential 
engagement of an enemy ISAACA entails the possibility of fratricide. 
Specifically, if an ISAACA X targets an enemy ISAACA Y (that is within 
the fire range rF of X) but does not "hit" Y - a hit/miss being decided by 
X's single-shot probability p^ - then, with probability pfrat, a friendly 
ISAACA X' within a fratricide range r^ of Y may be hit instead (see 
figure 14). 

Figure 14. Schematic of a fratricide "hit" of X' by X 
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Communication 

If the communication flag is set (see User's Guide), each ISAACA X can 
communicate with all friendly ISAACAs Y that are located within a 
communications range rc of X; see figure 15. 

All friendly ISAACAs Y within range rc of X communicate to X the 
information contained within their own sensor range rs. ISAACA X then 
incorporates this additional information into its penalty calculation by 
weighing all communicated information with a communication weight 

Wcomm ^ 0. The full penalty is defined as 

Z(x,y) = Zo(x,y) + wCommZComm(x,y), 

where Zo(x,y) is the communications-Tree penalty function defined 
earlier, and ZComm(x,y) is the same penalty function applied to 
communicated information. 

If Wcomm =0   , X effectively ignores all communicated information; if 
yvcomm = 1/2,   X  considers   all   communicated  information   "half  as 
important" as the information contained within its own sensor field; if 
Wcomm = 1 i X considers all communicated information on equal terms 
with information within its sensor range. 

Figure 15. Schematic of ISAACA communications 

Command and Control 

In its simplest run mode, ISAAC has only one kind of ISAACA, and uses 
a strictly decentralized command and control structure: ISAACAs do not 
communicate with any other ISAACAs and all ISAACAs base their 
decisions   on   information   that   is   strictiy   local   to   their   sensor's 
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field-of-view. Although such a design is entirely adequate for exploring 
the consequences of having a rigorously decentralized C2 structure, any 
serious analysis tool of real combat must, of course, include some form 
of a functioning C2 hierarchy. 

To this end, the user has the option of defining a notional command 
and control (C2) hierarchy within ISAAC. This hierarchy consists of 
ISAACA collectives, wherein red and blue sides both consist of three 
different kinds of ISAACAs (see figure 16): 

• Elementary combatants, such as have been already described above. 

• Local commanders, which are ISAACAs that command, and 
coordinate information flow among, local clusters of elementary 
combatants. 

• Global commanders, which are ISAACAs that have a more global 
perspective of the batdefield, and coordinate the actions of the 
local commanders under their command. 

Figure 16. Schematic representation of a ISAACA C2 hierarchy 

global commander 

■ = ISAACA ~~ 

D = local commander 

command 
radius 

In its current design (which will undoubtedly evolve in sophistication in 
future versions of ISAAC), local and global commands involve a 
goal-specification on successive nestings of blocked sites. That is to say, 
one way in which, say, local commanders can issue orders to the 
elementary combatants under their command — in a way that is also 
consistent with the general individual-personality-driven 
decision-making   process   introduced   in   this  paper  —  is   to   issue 

41 



/irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

intermediate "goals" that the elementary combatants must attain within 
certain time frames within given blocks of sites. The elementary 
combatants use exactly the same personality-driven criteria to select 
their local moves, but their goals no longer consist solely of getting to 
the enemy's flag; in addition, their goals now include a variety of lesser, 
local goals as specified by their local commanders. The selection of 
these local goals, in turn, are driven by more global strategies that 
would be the result of the decision-making processes taking place in the 
"minds" of global commanders (see below). 

Local Command 

If the user chooses to use the local command option (which is done by 
setting an appropriate "flag" in ISAAC'S data-input file; see discussion in 
A Concise User's Guide to ISAAC), the internal logic of the program is 
enhanced in two ways: 

1. Local commanders (LCs) are introduced, and are given a certain 
number of subordinate ISAACAs to command. 

2. Elementary ISAACAs that are under the command of a LC are 
endowed with two additional weights, one of which defines 
their propensity for "staying close to" their LC (=wLC) and the 
other the propensity for "obeying" the orders issued by their LC 

(=Wobey)- 

Figure 17. Local command (see text) 
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Local Command Area 

Local commanders are endowed with a surrounding "command area" 
(defined by a command radius Rcommand) that moves with them as they 
move throughout the lattice. This command area is also partitioned 
either into 3-by-3 or 5-by-5 blocks of smaller blocks. Figure 17 shows a 
schematic of a typical local command structure partitioned into nine 
sub-blocks. 

The center positions of these smaller blocks represent transient "local 
goals" that a local commander can order his subordinates to "move 
toward" during a given move (how these orders are actually issued is 
discussed immediately below). The size of these smaller blocks is equal 
to (2rbIock+l)-by-(2rbIock+l) where rblock is the effective (user-defined) 
"radius" of the block. The overall command area is therefore either a 
3(2rblock+l)-by-3(2rblock+l) or a5(2rblock+l)-by-5(2rblock+l) square. 

The user can define up to 25 different LCs, each of which can have up 
to 100 subordinate ISAACAs under their command. Each LC is also 
endowed with a unique movement- and command-personality. 

A LCs movement personality is defined by the same personality weight 
vector described earlier, except that it does not have to equal the 
personality weight vector assigned to its subordinate ISAACAs. For 
example, the "personality" of a LCs subordinates may be defined by the 
personality weight vector w = (10,40,10,40,0,50) and continue 
moving toward neighboring friendly forces only until surrounded by 
five friendlies, while their commander "wants" only to progress toward 
goal (i.e., w = (0,0,0,0,0,10)) while always seeking to cluster with 
whatever friendly forces may be nearby. 

If no enemy ISAACAs are sensed in the local command area, all 
components of the LCs personality weight vector are temporarily set to 
zero (wi=...=w5=0) except w6 (i.e., enemy goal). 

The local command personality is defined by four weights (cxlocaI, ßlocal, 
^locai and Yiocai) t^iat prescribe the relative degree of importance the LC 
places on various measures of relative information contained in each 
block of sites within his command area. Specifically, the LC weighs each 
block of sites by a penalty weight z; given by 

where Ff™ and F*"juml are the number of alive and injured friendly 
ISAACAs in the i* block, £/'fe and E™juml are the number of alive and 
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injured enemy ISAACAs in the i* block, 0<afoöri,ßfoarf,8focaZ,yfoori: 
and a local + ß local+ S local + J local:- 

In words, an LC identifies the block of sites within his command area 
that contains the smallest fractional difference between friendly and 
enemy forces; i.e., the block B; for which zi is a minimum. All 
subordinate ISAACAs are then "ordered" to move toward the center of 
that block. In the event that more than one block yields the same 
minimum value, the LC chooses the one that is closest to the block 
chosen on the previous iteration step. 

If a local commander is killed, a random ISAACA under its command is 
"promoted" to LC status and resumes the previous LC's function. 

Subordinate ISAACAs 

As mentioned above, once the local command option is enabled, the 
personality weight vector defining the elementary ISAACAs under the 
command of a LC is automatically enhanced to include two new 
weights: 

• 0 < WLQ < 1, that defines the relative weight afforded to "staying 
close to" their LC, and 

• 0 < iVgfrgy < 1,   that   defines   the   relative   weight   afforded   to 

"obeying" the orders issued by their LC. 

In the case of wLC > 0, a subordinate ISAACA will seek to "move closer 
to" his LC (or, more specifically, his LC's x,y coordinates) whenever that 
subordinate is outside his LC's command area. If the subordinate 
ISAACA is inside his LC's command area, xvLC is temporarily (i.e., during 
that iteration step) set to zero. Note that wLC is actually determined by a 
user-specified pre-factor cc that multiplies the maximum value of an 
ISAACA's personality weight vector (see User's Guide); i.e., 

WLC = axmaxda/!!,...,!^!). 

Once the LC issues a "move to block B" order, his subordinate ISAACAs 
respond by incorporating the (x,y) coordinates of the center of block B 
(=(xB,yB)) by using the following penalty function for their individual 
move selection: 

Z= Z0 + wLC(move to xLC,yLC) + wobey(move to xB,yB) , 

where Z0 is the penalty function used by individual ISAACAs (without 
local command). 

44 



Irreducible &mi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

The values of wLC and wobev relative to 1 (the effective constant in front of 
Z0) define the relative weights that an individual ISAACA gives to either 
"staying close to" or "obeying" his LC. For example, a maximally 
insubordinate ISAACA that totally disregards his LC's orders has wobey=0. 

Example 

Figure 18 shows an example of a blue LC defined by local command 
weights aloca] = ßlocal = 8local = ylocal = 1/4. In this case, the penalty weight for 
the 1th block, Bi; of his command area is simply equal to the difference 
between the number of blue and red ISAACAs in B, divided by the total 
number of red ISAACAs in the entire command area. With the local 
distribution of red and blue ISAACAs as shown in figure 18, the LC finds 
that - consistent with his command personality as defined by the weights Ctlocal, 

ßiocai' ^locai' an<^ Tiocai ~ block B3 (in which a single blue ISAAC in block B3 is 
outnumbered by three red ISAACAs) is the block that is in the greatest 
need of local blue assistance. The LC therefore issues a "move to block 
B3" order to all subordinate ISAACAs. 

Figure 18. Local command (see text) 

Order = 
"Move to Block 3" 

ISAACA 

0   % 

z,=0 z,=-l/10 z,=-2/10 

z4=0 

LC 

• --- 
Zj=0 

z,=+3/10 

• • • 

z„=+l/10 

Global Command 

Global commanders (GCs) issue orders to local commanders using 
global (i.e., battlefield-wide) information. GCs effectively know everything 
about the overall state of the battle, at least during the preceding 
iteration step. Their orders to subordinate LCs consist of two parts: (1) 
the manner in which to respond to other LCs, and (2) a direction into 
which to move. 

GC Command of LC-LC interaction 

Interaction among LCs is mediated by the GC, who effectively "decides" 
when to send a local commander LC( (and his subordinates) to "help" a 
nearby LC according to the relative health states of LC; and LCp The 
health state of the i* local commander, 0 <health(LC A < 1, is a simple 
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measure of how close the overall state of that LC's command area is to 
its initial state. If all subordinates are present14 and there are no enemy 
ISAACAs within the command area, the health state is maximum and 
health (LC;) = 1; if all subordinates have been killed or the command 
area contains the maximum number of allowable enemy ISAACAs, the 
health state is minimum and health (LC;) = 0. Intuitively, as an LC's 
health value decreases, "need for assistance" increases. More 
specifically, health (LC;) is defined as follows: 

health(LCj) = a 
fF(l+yF0-E) 
I F0(l+yF0) 

where G(x) = xif0<x<l else a(x) = 0 , F0is the total number of alive 
friendly subordinates under LC/s command, Fis the current number of 
subordinates within the local command area, E is the current number 
of enemy ISAACAs within the local command area, and 0 < y < 1 is a 
factor that specifies the maximum number of "allowable" enemy 
ISAACAs (as a fraction of the initial number of friendly subordinates). 
For example, if y=l, then health (LC;) ~ 0 when E = F0 and health(LQ) ~ 
1/2 when E = 1/2 F0. Figure 19 shows plots of health(LQ) as a function 
of E for Y=0.2, y==0.5, and 7==0.9 for the cases (F0 = 100,16=100) and (F0 = 
100,25=75). 

Figure 19. Plot of health(LC) versus number of enemy ISAACAs 
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If a given LC; is "healthy" enough - that is, if his health state exceeds a 
given threshold, h^^ - he looks for other LCs, LCj; within his help 
range Rh that he can move toward to help. Candidate LCs to help are 
those for which the relative fractional health (= Ay) is greater than a 
health threshold (=Ahthrcsh). LQ moves toward the closest LCj that needs 
help. This GC LC-LC interaction rule is summarized in figure 20. 

14     The health measure as defined in this version of ISAAC does not yet discriminate 
between individual alive and injured ISAACA states. 
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Figure 20. Rule for GC mediated LC-LC interaction 

LCi"help"LCi if 

GC Command of Autonomous LC Movement 

In addition to mediating the interaction among subordinate local 
commanders, the GC also determines the direction into which each of 
his LCs shall move. In order to explain how a GC "decides" upon a 
direction, we must first introduce three ideas: (1) battlefield sectors, (2) 
way-points, and (3) the GC-fear index. Figure 21 illustrates the pertinent 
parameters. 

Consider a local commander LC; under the command of a GC. Using 
the (x^V;) coordinates of LC/s position at time t, the GC partitions the 
entire batdefield into 16 sectors (S1,S2,...S16). The boundary of each of 
these sectors is set by (x^) and the (x,y) coordinates of 16 next-nearest 
neighboring way-points (COj, COg,..., ©iß) > equally spaced along the edge 
of the batdefield. These way-points represent the possible "directions" 
into which a subordinate LC might be ordered to move.15 The 
definition of sectors Sj and S7 are shown in figure 21. 

Each way-point CO; is assigned a weight that represents the penalty that will 
be incurred if LC{ moves in that point's direction. Assume that the red and 
blue flags are positioned near the lower-left and upper right of the 
batdefield, respectively. Since the red GC wants to get to the blue flag 
(near C09), the red GC way-point weight distribution is fixed by setting Cöj 
to the maximal possible value, 1, and 039 to the minimal value, 0; the 
remaining weights for (02 - co8 and (010 - <a16 are then assigned values 
between 0 and 1, with higher penalties appearing for points closer to 
C0j: COg = 0 < ©8, Cöjo < • • • < ©2, ©ig < COj = . For blue GCs, that want 
to get to the red flag near G^), the way-point weight distribution is just 
the opposite: G)9 is assigned the maximal possible value, 1, and (Oj the 
minimal value, 0, and (Dj =0 < (OgjOjö - "" — "^»^lO — ®9 = 1- 

15 Note that this program logic is currently defined only for the case where the red 
and blue flags are located in the lower-left and upper-right of the notional batdefield. 
Future versions of ISAAC will eliminate this arbitrary constraint. 
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Figure 21 shows that each sector S; is subdivided into three rings: an 
inner ring (that is closest to LC;'s position) Rp a middle ring Rg, and an 
outer ring Rj. These rings, from inner to outer, define successively "less 
important" regions to the GC, as far as the information that he will use 
to guide LCj's motion is concerned. Specifically, this information is the 
density of enemy ISAACAs within the different sub-regions of a given 
sector. Thus the inner-most region, out to a radius R: from LCj's 
position, represents that area around LC; that the GC cares most about. 
The middle area, at distances Rj < R < 1^ from LC;'s position, represents 
an intermediate level of importance. The outer ring, at distances 
greater than R^ represents an area of the battlefield that a GC is 
currendy least concerned about in deciding what direction to order LQ 
to move into. 

In defining these sectors and their sub-regions, the user supplies values 
for Rj, and Rg along with the relative weights 
0 < züßj, ZUR2 , WR$ < 1, WR + WR2 + WR3 = 1 that specify the relative 
degree of importance that the GC will assign to the corresponding 
sub-regions of each sector. 

Having defined battlefield sectors and way-joints, we are now finally in a 
position to describe how a GC "decides" upon a direction into which to 
send each of his subordinate LCs, as well as what those LCs do with such 
orders. In words, the GC computes a penalty value, P;, for ordering a LC 
into sector S; (spanning way-points co^ and coi+1), and orders the LC 
toward the sector S; for which R is minimal. 

Figure 21. Global command (see text) 
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The penalty value consists of two parts, the intrinsic penalty incurred by 
moving toward way-point (ty, and the penalty incurred by moving into a 
sector that has a given density of enemy ISAACAs. Specifically, 

Pi = (l-./)(öi+/pf, 

where p^ is the number of enemy ISAACA per unit area in sector S; 

(weighed using weights w^, w^, and WR^ for sub-regions R,, R, and 

R3 of each sector; see above), and 0 </< 1 is the GC fear index. If/= 0, 
the GC is effectively fearless of the enemy and the criteria by which he 
decides what direction to send each of his LCs into consists entirely of 
the intrinsic penalty value associated with each way-point; i.e., Pi = CO;. 
On the other hand, if/= 1, the GC is concerned only with keeping his 
LCs (and their subordinates) away from harm's way and his choice of 
movement vector is made entirely on the basis of the enemy force 
strength in each sector. Any value for / between these two limits 
represents a GC command-personality-defined tradeoff between 
wanting to simultaneously satisfy two desires: moving LCs closer to the 
enemy flag and preventing them from encountering too many enemy 
forces while doing so. 

The general rule for GC command of LC movement is summarized in 
figure 22. 

Figure 22. Rule for GC command of LC movement 

Order LC to move to the s« 
the penalty Pj is minimum: 
Order LC to move to the sector Sj for which 

» pf = <xpf(AE) + ßpf(IE) 

•    O^fsSl 

LC Response to GC Commands 

Having received an "order" from his GC, a local commander must now 
weigh several different factors to decide on his own course of action: his 
sensor view of battlefield, the disposition of his subordinate ISAACAs 
within his command area, and the tradeoff between helping other local 
commanders (who, according to the GC, may be in need of assistance), 
and moving toward the enemy goal. The LCs decision is shaped by 
using three additional command weights: 
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• 0 < Qhelp - 1 >   that  defines   the   relative  weight  afforded   to 

moving toward and "assisting" another LC, 

• 0 < QSec tor - 1 >  that defines the relative weight afforded  to 
moving into a GC-ordered battlefield sector , and 

• 0 < ^obey-GC - 1» that defines the relative weight afforded to 

obeying GC orders. 

Once the GC issues orders to "move toward another LC" and/or "move 
toward way-point CO;", his subordinate LCs decide upon their own moves 
according to the following penalty function: 

Z =    Z0 + ^obey-GC {^help(move toward LC j) + 

^sector(move toward LC^)} 

The value of ßobeyuGC relative to 1 (the effective constant in front of Z0) 
defines the relative weight that a LC assigns to the movement vectors 
ordered by his GC. For example, ßobey^c= 1 rneans that the LC treats his 
own information and the information supplied by his GC on an equal 
footing; ßobeyiGC= 0 means that the LC effectively ignores his GC's orders. 
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A Concise User's Guide to ISAAC 
ISAAC is a DOS program. It can be run from either the DOS command 
line or within a DOS-box in windows. Since it is written in ANSI-C, 
ISAAC is highly portable, though its current version uses graphics 
primitives defined in Microsoft's Visual C/C++ compiler for DOS (vl.52). 
A fragment of ISAAC'S source code and header files is provided in 
appendix C. 

Hardware Requirements 

Computer Memory 

The executable supplied on the accompanying disk has been compiled 
using Phar Lap's 286IDOS-Extender16 to allow it to use up to 16 MB of 
extended memory. While the source code can of course by compiled 
without a memory extender, and ISAAC can be run with computers 
equipped with even 1 MB of RAM, DOS's 640K memory ceiling places a 
significant constraint on the battlefield size and/or maximal number of 
ISAACAs that can be defined per run (see table 6). 

Table 6. Tradeoff between available memory and some basic run-time 
parameters in ISAAC 

Parameter                Using DOS-Extender      No DOS-Extender 
 (16MB) (640KMax) 

Number of ISAACAs/side < 500 <80 

Battlefield size < 150-by-150 < 80-by-80 

Graphics 

ISAAC can be run in either VGA (640-by-480) or SVGA (800-by-600) 
graphics modes, the default (and preferred) mode being SVGA. On 
some older computers, a utility program such as wesa.com must be 
run prior to running ISAAC to enable SVGA graphics. 

16     Phar Lap Software, Inc., 60 Aberdeen Avenue, Cambridge, MA 02138; WWW 
address: http://www.pharlap.com. 
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Installing ISAAC 

To install ISAAC, copy all the files from the accompanying disk into a 
subdirectory on a hard drive. For example, assuming the disk is in drive 
A and you wish to install ISAAC in a subdirectory called ISAAC on hard 
drive C, enter the command 

xcopya:*.*/s/v c:/ISAAC   (...followed by ENTER) 

This command will copy all executables and necessary font files, and 
create two additional subdirectories in c:/ISAAC>: 

• c:/ISAAC/DAT> - which contains sample input data files 

• c:/ISAAC/OUT>   -   which   contains   sample   *.out   files   of 
previously recorded runs 

Starting ISAAC 

To start the Core Engine of ISAAC (see table 4), go to the appropriate 
subdirectory on the hard drive (say, C:/ISAAC>) and type the 
command ISAAC followed by <ENTER> on the DOS command line. 
You will see the opening screen (figure 23), specifying the current 
version and build date of the program and a prompt to press <ENTER> 
to continue. 

Figure 23. ISAAC'S opening screen 

ISAAC 
Irreducible Semi-Autonomous 

Adaptive Combat 

Version 1.8;4 
10 April 1997 

Andy ilachinski 
Center for Naval Analyses 

4401 Ford Avenue 
Alexandria, VA 22302 

ilachina@cna.org 

Press <ENTER> to continue 
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The next screen prompts for the type of run desired (see figure 24). 
You may select to either run the core engine with some new input, to 
replay an old run at high speed using a previously stored data file, or 
quit the program. Because ISAAC is computation intensive, the speed 
of real-time screen updates of an actual run (i.e., using the core engine) 
will depend heavily on the speed of the computer. As a baseline 
measure, each iteration of a scenario in which there are 50 red and 50 
blue ISAACAs, each ISAACA evolves according to all six movement 
constraints oudined in the previous section and each ISAACA possesses 
a moderate sensor range (rs = 4), takes about 1-1.5 sec to update on the 
screen of a 33 MHz 486-class computer. Play-back of the same scenario 
on the same computer from a data file proceeds roughly ten times 
faster. 

Figure 24. ISAAC'S main option screen 

SELECT RUN OPTION 

lil Run ISAAC engine with new input 
[2] Playback old run 
[3J Quit 

If option 1 is selected, the user is prompted to select the form of data 
input. Data may be input by either having ISAAC prompt the user for 
all information on screen, or by reading direcdy from an input data file. 
Several sample input files (ISAACdat, ISAACJLCdat, ISAAC_GC.dat, 
and TERRAIN.dat) are provided on the supplied disk. Their contents 
are described below. 

Figure 25. ISAAC'S second option screen 

SPECIFY FORM OF OUTPUT 

[1] Terminal 

[3] Both 

If option 2 is chosen, the program prompts for a file name, then loads 
and executes the playback of that file. The accompanying disk contains 
several self-extracting compressed "OUT" files (as previously recorded 
files will be called) that, when executed, automatically decompress (and 
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store on the hard drive) several sample *. out data files that can then 
be run with option 2. (See Sample Runs) 

The user is next asked to select the method of data output during the 
current run; see figure 25. 

The choices are either to display output only to the computer's screen 
(option 1), to by-pass the screen and store directly to a file (option 2), 
or to do both (option 3). If the selected option involves writing to a file, 
the user is prompted for an output data file name and the total number 
of iteration steps to record. (As mentioned above, ISAAC'S sample 
output files are named *.out, but the user may, of course, choose any 
other name.) The default, and preferred graphics mode is SVGA 
(800-by-600 resolution), but ISAAC can "fall back" to VGA (640-by-480) 
automatically if the hardware and/or software combination does not 
permit the higher resolution mode. 

Contents of ISAAC'S Input Data File 

As mentioned above, the accompanying disk contains several sample 
data files: (1) ISAACdat, which contains parameters defining a simple 
scenario in which 50 red and 50 blue ISAACAs advance toward one 
another without either side having any command and control structure; 
(2) ISAAC_LC.dat, which defines a scenario in which red is endowed 
with a single local commander; (3) ISAAC_GC.dat, which gives red a 
global commander with three subordinate local commanders, and (4) 
TERRAIN.dat, which is a sample terrain data file populating the 
battlefield with several impenetrable terrain features. 

Because of the number of user-specified options and parameter settings 
available, the preferred mode of data entry is always direct file input, 
though the user always has the option of using on-screen prompts to 
input all values. In this section we will describe in some detail the 
contents of a generic ISAAC *.datfile. 

A typical ISAAC *.dat file is nothing more than a lengthy listing of 
labeled parameter values partitioned into several self-contained 
sections: 

• General battle parameters 

• Initial distribution 

• Fratricide parameters 

• Reconstitution 

• Statistics parameters 

• Red global command parameters 
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• Direction parameters 

• Help parameters 

• Blue global command parameters 

• Direction parameters 

• Help parameters 

• Red local command parameters 

Local commander parameters 

Local commander personality 

Local commander constraints 

Local command weights 

Global command weights 

• Blue local command parameters 

Local commander parameters 

Local commander personality 

Local commander constraints 

Local command weights 

Global command weights 

Red ISAACA parameters 

ALIVE personality weights 

INJURED personality weights 

ISAACA-LC weights 

Sensor/fire ranges 

Communications 

Movement constraints 

Combat/engagement 

• Blue ISAACA parameters 

ALIVE personality weights 

INJURED personality weights 

ISAACA-LC weights 

Sensor/fire ranges 

Communications 

Movement constraints 

Combat/engagement 

• Terrain parameters 

Note that most sections are further subdivided into one or more 
subsections containing clusters of related variables. Not all sections 
contain values for all scenarios, however. Also, some sections, such as 
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those for defining local command parameters and terrain are variable 
in length (see below). 

General Battle Parameters 

The first section of user-specified parameters is the  General Battle 
Parameters section. A sample fragment appears in figure 26. A short 

•   description of each variable appearing in this section is given below. 

Figure 26. General battle parameters 

vibattl ;e_^1: z e.:::
: %m:;>;- 8 0.;:; ^ 

v*'.. :i hi t i: ä T :i d i S:t r i b U t i on';;.; 

4 n i t_d i st^f 1 ag?:; v ■: 1 •■; ■  
R_bOx_Ü,w) 20,2020,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 ; 
RED_cen,(X,y) .     20,20 20,20 20,20 20,20 20,20 20;20 20.20 20,20 20,20 20,20 
Bboxjl.w) 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 
BLUCceMx.y): 70.70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 i 

: B^fl ägIKx,y>;;       .: 7.9,-79 ^M.^^M^^'-':: 
R_f 1 a qkCxm m 1> :■ 1 v 1;:  
fermtwatioh? ^^^ßZ^.^-i'M..:, 
move border?;: ■:Hy\':.yZ:/

:y-:\":^ 

:tetr:a;th_f 1 ag? ':y:; V::;: 0: j■ 

;'+0 ra-tr-i cideVipa^ameters :; 

::redi:frat_.f1:äg:? t,.:.-P^-fe-:;:-o.:-V';-^-:-': :'■■;,: '■■:■:■.' 
;-^i:liü-e^rbt^f"1;ä.g?::: :-"::;;:P.;"-;':; 
:;;red_^-fr:a;t_.rad .: ,:^:.-..>i--'.;-■?■■■' 
:";bl:ue^fra:t_rad '■;::;:; .KI.M 
::redzfrat_prob'■:■"•'■:    :0vOQlOOOV ; 
;m ue_frat_prob ;■;!■•:;[ ■:0:001000 ::;::- 

I"* re constitution V 

reconst^flag?. ■ i-: .10 ■■:'."" 
:" R£ D_j" eq p n_t i me :; ■ :10": :' 
i;B tUE_rec o n_t i me      10 ; 

batüe_size 

The first entry is batüe_size, which defines the length of one of the 
sides of the two-dimensional square lattice on which the run is to take 
place. The user can specify any integer number between 10 and 150. 

init_dist_flag 

init_dist_flag can take on one of three integer values: 1, 2 or 3. If 
init_dist_flag = 1, the user defines the actual spatial distribution of red 
and blue ISAACAs (see next few parameter entries); if init_dist_flag = 2, 
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red and blue ISAACAs initially consist of random formations near the 
lower-left and upper-right corners of the notional battlefield; if 
init_dist_flag = 3, red and blue ISAACAs are initially randomly placed 
within a square box at the center of the battlefield. 

R_box_(l,w) 

This defines the (length, width) of the "box" containing the initial 
distribution of red ISAACAs for each of ten squads. Note that ISAAC 
assumes that all ten fields will be filled in even if there are fewer than 
ten red squads. 

RED_cen_(x,y) 

The (x,y) coordinates of the center of the "box" containing the initial 
distribution of red ISAACAs for each of ten squads: 0 < x, y < 
battle_size. Note that ISAAC assumes that all ten fields will be filled in 
even if there are fewer than ten red squads, x and y are constrained to 
lie between 1 and batüe_size. 

B_box_(l,w) 

This defines the (length, width) of the "box" containing the initial 
distribution of blue ISAACAs for each of ten squads. Note that ISAAC 
assumes that all ten fields will be filled in even if there are fewer than 
ten red squads. 

BLUE_cen_(x,y) 

The (x,y) coordinates of the center of the "box" containing the initial 
distribution of blue ISAACAs for each of ten squads: 0 < x, y < 
battle_size. Note that ISAAC assumes that all ten fields will be filled in 
even if there are fewer than ten red squads, x and y are constrained to 
lie between 1 and battle_size. 

B_flag_(x,y) 

The (x,y) coordinates of the blue flag: 0 < x,y < batüe_size. 

R_flag_(x,y) 

The (x,y) coordinates of the red flag: 0 < x,y < batüe_size. 

termination? 

This parameter "flag" specifies the termination condition that will be 
used during this run: if termination is set equal to 1 then the run is 
terminated whenever any ISAACA (red or blue) reaches the opposing 
color's flag for the first time; if it is set to 2, the run continues until the 
run is terminated by the user (by pressing the "Q" key). 

57 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

move_order? 

There are two ways in which moves can be sampled during an ISAAC 
run. If move_order = 1, then, at the start of each run, a randomly 
ordered list of red and blue ISAACAs is first set up prior to the start of 
the actual dynamics loop. During all subsequent passes, ISAACA moves 
are then determined either by sequencing through the ISAACAs on this 
list in fixed order. If move_order = 2, this sequencing occurs in random 
order. See ISAACA Move Selection. 

combat_flag? 

If combat_flag = 0 then there is no limit to the maximum number of 
possible simultaneous engagements: all enemy ISAACAs within a given 
ISAACA's fire range will be automatically targeted for engagement. If 
combat_flag = 1 then each side will be able to simultaneously target a 
certain maximum number of enemy ISAACAs per iteration step. See 
R_max_eng_num and B_max_eng_num. See ISAACA Combat. 

terrain_flag? 

The software "flag" terrain_flag controls the use of notional terrain and 
takes on one of two values: 0 or 1. If terrain_flag = 1 then terrain will be 
used (see Terrain Parameters); if terrain_flag = 0 then terrain will not be 
used. 

red_frat_flag? 

The software "flag" red_frat_flag controls the use of fratricide on the 
red side and takes on one of two values: 0 or 1. If red_frat_flag = 1 then 
red ISAACAs will be able to accidentally target friendly red ISAACAs; if 
red_frat_flag = 0 then fratricide will not be possible. See ISAACA 
Fratricide. 

blue_frat_flag? 

The software "flag" blue_frat_flag controls the use of fratricide on the 
red side and takes on one of two values: 0 or 1. If blue_frat_flag = 1 
then red ISAACAs will be able to accidentally target friendly blue 
ISAACAs; if blue_frat_flag = 0 then fratricide will not be possible. See 
ISAACA Fratricide. 

red_frat_rad 

This parameter defines the radius around a targeted enemy ISAACA 
such that, if the red_frat_flag=l (so that fratricide is possible on the red 
side), all red ISAACAs located within the "box" defined by this radius 
become potential victims of fratricide. See ISAACA Fratricide for more 
detailed discussion. 
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blue_frat_rad 

This parameter defines the radius around a targeted enemy ISAACA 
such that, if the blue_frat_flag=l (so that fratricide is possible on the 
blue side), all blue ISAACAs located within the "box" defined by this 
radius become potential victims of fratricide. See ISAACA Fratricide for 
more detailed discussion. 

red_frat_prob 

The probability that a red (i.e., friendly) ISAACA is inadvertendy "hit" 
by a shot that was intended to hit a nearby enemy (i.e., blue) ISAACA. 
See ISAACA Fratricide. 

blue_frat_prob 

The probability that a blue (i.e., friendly) ISAACA is inadvertendy "hit" 
by a shot that was intended to hit a nearby enemy (i.e., red) ISAACA. 
See ISAACA Fratricide. 

reconst_fIag? 

The software "flag" reconst_flag toggles the reconstitution option. If 
reconst_flag = 1 then reconstitution will be used; if reconst_flag = 0 
then reconstitution will not be used. See Reconstitution in ISAACA 
Combat. 

RED_recon_time 

If the reconstitution flag reconst_flag is set equal to 1, then 
RED_recon_time defines the number of iteration steps following a "hit" 
(either by blue or, if the fratricide flag red_frat_flag is enabled, red 
ISAACAs) such that if during that time interval a given red ISAACA is 
not hit again, that ISAACAs state is reconstituted back to alive. See 
Reconstitution in ISAACA Combat. 

BLUE_recon_time 

If the reconstitution flag reconst_fiag is set equal to 1, then 
BLUE_recon_tirne defines the number of iteration steps following a 
"hit" (either by red or, if the fratricide flag blue_frat_flag is enabled, 
blue ISAACAs) such that if during that time interval a given blue 
ISAACA is not hit again, that ISAACA's state is reconstituted back to 
alive. See Reconstitution in ISAACA Combat. 

Statistics Parameters 

The Statistic Parameters section of the input data file consists of several 
flags the user can set to regulate the calculation of specific sets of 
summary statistics for a run. A sample fragment is shown in figure 27. 
See Data Collection. 
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Figure 27. Statistics Parameters 

.:*;:VSTATi;STIG| ■ PARAMETERS 

:goa 1 _slat_f"I ag?:;:;;:; :D \W 
center^ntassiflag? ";0 ;.-.■'■■: 
iriterpoinVfläg?   :0 : 
entropy^_f lag?:?:■•■ . ■ ■ 0 ■ 

;cl usiterl:2lf 1 ag? : 
; 0;: :A 

nei gftbörs_f 1 ag? .  ,.■ 0;
:.

: 

stat_flag? 

If stat_flag is set to 1 then statistics will be calculated for this run, 
otherwise no. See Data Collection. 

goal_stat_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate various "proximity to goal" 
statistics if goal_stat_flag = 1, otherwise no. Goal statistics include the 
number of red and blue ISAACAs within range R=l,2,... 5 of the red 
and blue flags. See Data Collection. 

center_mass_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate various "center-of-mass" 
statistics if center_mass_flag = 1, otherwise no. Center-of-mass statistics 
include keeping track of the (x,y) coordinates of the center-of-mass of 
all red ISAACAs, all blue ISAACAs and all combined forces, as well as 
distances between the center-of-mass of red and blue ISAACAs and 
enemy flag. See Data Collection. 

interpoint_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate various "interpoint distance" 
statistics if interpoint_flag = 1, otherwise no. Interpoint distance 
statistics include keeping track of the distribution of distances between 
red and red ISAACAs, blue and blue ISAACAs, red and blue ISAACAs, 
red ISAACAs and blue flag, and blue ISAACAs and red flag. See Data 
Collection. 

entropy_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will keep track of the approximate spatial 
entropy of the entire force disposition if entropy_flag = 1, otherwise no. 
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Red, blue and total spatial entropy is calculated using 16 blocks of 
20x20 sub-blocks, 64 blocks of 10x10 sub-blocks and 256 5x5 sub-blocks. 
See Data Collection. 

cluster_l_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate the cluster-size distribution 
(including ave +/- deviation) at each iteration step assuming an 
inter-cluster distance criteria of D=l, otherwise no. See Data Collection. 

cluster_2_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate the cluster-size distribution 
(including ave +/- deviation) at each iteration step assuming an 
inter-cluster distance criteria of D=2, otherwise no. See Data Collection. 

neighbors_flag? 

Assuming that stat_flag is set to 1 (so that statistics calculations are 
enabled for this run), ISAAC will calculate various "neighboring 
ISAACA" statistics, otherwise no. Neighboring ISAACA statistics include 
averages and deviations for the number of friendly, enemy and total 
ISAACAs <= range R=l, 2,..., rs (including red in red, red in blue, blue 
in blue, blue in red, all in red and all in blue). See Data Collection. 

Blue Global Command Parameters 

The Blue Global Command Parameters section of the input data file 
consists of flags and variables defining blue's global command 
personality. A sample fragment appears in figure 28. See Global 
Command for a detailed discussion of all variables appearing in this 
section. 

BLUE_global_flag? 

If blue_global_flag is set to 1 then a global commander will be used for 
the blue ISAACAs during this run, otherwise there will be no global 
commander (even if the other variables in this input section have valid 
entries). 

GC_fear_index 

The GC's fear index, which is a number between 0 and 1, represents a 
GC personality-defined tradeoff between wanting to simultaneously satisfy 
two desires: moving LCs closer to the enemy flag and preventing them 
from encountering too many enemy forces while doing so. If 
GC_fear_index = 0, the GC is effectively fearless of the enemy; if 
GC_fear_index   = 1, the GC is maximally fearful of the enemy and 
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wishes only to keep LCs and their subordinate ISAACAs away from the 
enemy. See Global Command. 

GC_w_alpha 

This is relative weight that the global commander assigns to the 
density of alive enemy ISAACAs located within each of the three annular 
subregions of the battlefield sectors. It is a number between 0 and 1. 
See GC Command of Autonomous LC Movement. 

Figure 28. Blue global command parameters 

BLUE_g1oba1_flag    1 
* 
* direction parameters 
* 
GC_fear_index        1.  : 
GC_w_alpha 1. 
GC_w_beta 1. 
GGIfräc2R[i] .3 
GC_frac_R[2] .6: 
GCawiswaith"[I]: :.:,. : 1 /: ^ 

' GC_W™SWättl [3 ] ■    ■ :.;i 1 ,: :;:("; 
:  *      .   : . 
* help parameters 

GC_max_red_f 2.5 
GC_he1p_radius 40 
GC_h_thresh .1 
GC_rel_h_thresh 1.5 

GC_w_beta 

This is relative weight that the global commander assigns to the 
density of injured enemy ISAACAs located within each of the three 
annular subregions of the battlefield sectors. It is a number between 0 
and 1. See GC Command of Autonomous LC Movement. 

GC_frac_R[l] 

This defines the size of the first of the three annular subregions of the 
battlefield sectors as the fraction (between 0 and 1) of the distance 
between the (x,y) coordinates of a given local commander and the 
way-point corresponding to a given sector. See GC Command of 
Autonomous LC Movement. 

GC_frac_R[2] 

This defines the size of the second of the three annular subregions of the 
battlefield sectors as the fraction (between 0 and 1) of the distance 
between the (x,y) coordinates of a given local commander and the 
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way-point corresponding to a given sector. Note that ISAAC 
automatically sets GC_frac_R[3] = 1- GC_frac_R[l] - GC_frac_R[2]. See 
GC Command of Autonomous LC Movement. 

GC_w_swath[l] 

This is relative weight that the global commander assigns to the first of 
the three annular subregions of the battlefield sectors; i.e., the sector 
that is closest to the (x,y) coordinates of a given local commander. It is 
a number between 0 and 1. See GC Command of Autonomous LC 
Movement. 

GC_w_swath[2] 

This is relative weight that the global commander assigns to the second 
of the three annular subregions of the battlefield sectors. It is a number 
between 0 and 1. See GC Command of Autonomous LC Movement. 

GC_w_swath[3] 

This is relative weight that the global commander assigns to the third 
of the three annular subregions of the battlefield sectors. It is a number 
between 0 and 1. See GC Command of Autonomous LC Movement. 

GC_max_red_f 

This defines the maximum number of "allowable" enemy ISAACAs (as a 
fraction of the initial number of friendly subordinates) within the local 
command area; i.e., the "g" factor defined in the section GC Command of 
LC-LC Interaction. 

GC_help_radius 

Defines the size of the box around a given subordinate local 
commander within which that local commander can possibly assist 
other local commanders. See GC Command of LC-LC Interaction. 

GC_h_thresh 

Defines the threshold health state for a local commander such that if 
that local commander's actual health is greater than or equal to 
GC_h_thresh, that local commander can then be ordered to "assist" 
(i.e., move toward) another nearby local commander. It is a number 
between 0 and 1. See GC Command of LC-LC Interaction. 

GC_rel_h_thresh 

Defines the relative fractional health threshold (=Dhthresh) between the 
health states of local commanders LC; and LCj such that if the actual 
relative fractional health Ajj > A/z^^, LC; can be ordered by the GC 
to move toward (i.e., "assist") LC. See GC Command of LC-LC Interaction. 
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Red Global Command Parameters 

The Red Global Command Parameters section of the input data file 
consists of flags and variables defining the red ISAACA force's global 
command personality. Except for the fact that they obviously refer to 
red rather than blue parameters, all entries in this section of the data 
input file have exactly the same meaning as their blue counterparts, 
defined above. See Global Command for a thorough discussion of how all 
of these variables are used in the internal logic of the program. 

Blue Local Command Parameters 

The Blue Local Command Parameters section of the input data file 
consists of flags and variables defining blue's local command 
personality. A sample fragment appears in figure 29. See Local Command 
for a detailed discussion of all variables appearing in this section. 

Figure 29. Blue local command parameters 
****************************** 
* BUIE: i:6eAL:;:C0HMAND;;;-PÄRÄMETERS~\ 
****************************** 

iS LÜE_cbihraänd_i^1 :a g: 1;;: i 
numJ3LUE_comdrs 3 

:B jjatch^type 1 
B_patch_f1ag 2 

local   commander parameters 

(l)_B_undr_cmd        15 
{1 )_B_cmnd^rad ;    2 ■:. 
U)_B_SENSOR_rng    7 

* local  commander personality 

U)_wl:alive_B 1.000000 
(D_w2:aTive_R 5.000000 
U)_w3:lnjrd_B        1.000000 
{1)_w4:injrd_R        5.000000 
U)_w5:8_goa1 0.000000 
(D_w6:R_goal 10.000000 

* local   commander constraints 

U)_B_THRS_ränge 4 
(l)_ADVANCE_num 0 
(l.)^CLUSTER_num 0: 

: U)_COMBAT_num 5 

local  command weights 

(l)_B_w_alpha 1. 
U)_B_w_beta 1. 
(l)_B_w_delta 1. 
<1)_B_w^gamma 1. 

*-global command weights 

U)_w_ot>eyJJC_def 1. 
(l)_w^help_LC_def .5 
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BLUE_local_flag 

If blue_local_flag is set to 1 then the local commander option will be 
used for the blue ISAACAs during this run; If blue_local_flag = 0, there 
will be no local commanders. An important point to remember is that if 
this flag is set to 0 then all other entries in this section of data input file 
must be removed. 

num_BLUE_cmdrs 

This defines the number of blue local commanders (between 1 and 10). 
Note that all entries in this section that follow the subheading "local 
commander   parameters"   and   begin   with   (1)    (i.e., 
(l)_B_undr_cmd, (l)_B_cmnd_rad, etc.) refer to parameter entries for 
the 1st local commander. If num_BLUE_cmdrs > 1, then this entire 
cluster of parameters beginning with (1) must be repeated, in 
the same order, and with appropriate values, for each of the 
num_BLUE_cmdrs local commanders. That is, the start of the 
parameter cluster for the 2nd local commander (i.e., the entry 
(2)_B_undr_cmd) must immediately follow the last entry for the 1st local 
commander ((l)_w_help_LC_def; see below). The first value for the 
parameter cluster for the 3rd local commander follows the last value for 
the parameter cluster for the 2nd local commander, and so on. 

B_patch_type 

Recall that a local commander's "command area" may be partitioned 
into either 3-by-3 or 5-by-5 blocks of smaller blocks. B_patch_type = 1 
partitions this area into 3-by-3 sub-blocks; B_patch_type = 2 partitions 
this area into 5-by-5 sub-blocks. See Local Command. 

B_patch_flag 

A "flag" that regulates how a local commander breaks a tie between two 
or more sub-blocks that he calculates will incur the same "penalty" if he 
orders his subordinate ISAACAs to move toward them. If B_patch_flag 
= 1, the LC chooses a random sub-block out of this same-penalty set. If 
B_patch_flag = 2, the sub-block that is chosen is the one nearest the 
sub-block that was previously chosen. 

(n)_B_undr_cmd 

This parameter specifies the number of blue ISAACAs under the 
command of the n* blue local commander. In the current version of 
ISAAC, the maximum number of subordinate ISAACAs for one local 
commander is 100. 

(n)_B_cmnd_rad 

This defines the "radius" of one of the sub-blocks that the n* blue local 
commander's local command area is subdivided into. This area is 
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subdivided either into 3-by-3 subblocks (if B_patch_type = 1; see above) 
or 5-by-5 blocks (if B_patch_type = 2). See Local Command. 

(n)_B_SENSOR_rng 

This defines the n* blue local commander's sensor range. As such, it 
can be different from the sensor range of the local commander's 
subordinate ISAACAs. 

(n)_wl :alive_B 

This defines the 1st component of the n* blue local commander's 
personality weight vector. This first component represents the relative 
weight afforded to moving toward alive blue (i.e., friendly) ISAACAs. It is 
a number between 0 and 100. See Personality Weight Vector. 

(n)_w2:alive_R 

This defines the 2nd component of the n* blue local commander's 
personality weight vector. This second component represents the 
relative weight afforded to moving toward alive red (i.e., enemy) 
ISAACAs. It is a number between 0 and 100. See Personality Weight 
Vector. 

(n)_w3:injrd_B 

This defines the 3rd component of the n* blue local commander's 
personality weight vector. This third component represents the relative 
weight afforded to moving toward injured blue (i.e., friendly) ISAACAs. 
It is a number between 0 and 100. See Personality Weight Vector. 

(n)_w4:injrd_R 

This defines the 4th component of the n* blue local commander's 
personality weight vector. This fourth component represents the 
relative weight afforded to moving toward injured red (i.e., enemy) 
ISAACAs. It is a number between 0 and 100. See Personality Weight 
Vector. 

(n)_w5:B_goal 

This defines the 5th component of the n* blue local commander's 
personality weight vector. This fifth component represents the relative 
weight afforded to moving toward the blue (i.e., friendly) goal. It is a 
number between 0 and 100. See Personality Weight Vector. 

(n)_w6:R_goal 

This defines the 6th component of the n* blue local commander's 
personality weight vector. This sixth component represents the relative 
weight afforded to moving toward the red (i.e., enemy) goal. It is a 
number between 0 and 100. See Personality Weight Vector. 
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(n)_B_THRS_range 

This defines the n* blue local commander's threshold range. The 
threshold range defines a boxed area surrounding the LC with respect 
to which that LC computes the numbers of friendly and enemy 
ISAACAs that play a role in determining what move to make on a given 
time step. This local decision-making process is described in the section 
ISAACA Adaptability. 

(n)_ADVANCE_num 

This defines the n01 blue local commander's advance threshold number, 
which represents the minimal number of friendly ISAACAs that must be 
within the threshold range (=(n)_B_THRS_range) for which the LC will 
continue moving toward the enemy flag (if it has a nonzero weight to 
do so). See Advance Constraint in ISAACA Adaptability. 

(n)_CLUSTER_num 

This defines the n* blue local commander's cluster threshold number, 
which represents a friendly cluster ceiling such that if the LC senses a 
greater number of friendly forces located within its threshold range 
(=(n)_B_THRS_range), it will temporarily set its personality weights for 
moving toward friendly ISAACAs (=(n)_wl:alive_B and (n)_w3:injrd_B) 
to zero. See Cluster Constraint in ISAACA Adaptability. 

(n)_COMBAT_num 

This defines the n* blue local commander's combat threshold number, 
which fixes the local conditions for which the LC will choose to move 
toward or away from possibly engaging an enemy ISAACA. Intuitively, 
the idea is that if the LC senses that it has less than a threshold 
advantage of surrounding forces over enemy forces, it will choose to 
move away from engaging enemy ISAACAs rather than moving toward 
(and, thereby, possibly engaging) them. See Combat Constraint in 
ISAACA Adaptability. 

(n)_B_w_alpha 

This defines the 1st of four local command weights that prescribe the 
relative degree of importance the LC places on various measures of 
relative information contained in each block of sites within his command 
area. This first component represents the relative weight afforded to the 
fractional difference between alive friendly and alive enemy ISAACAs 
relative to the total number of friendly ISAACAs in each sub-block. See 
Local Command. 

(n)_B_w_beta 

This defines the 2nd of four local command weights that prescribe the 
relative degree of importance the LC places on various measures of 
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relative information contained in each block of sites within his command 
area. This second component represents the relative weight afforded to 
the fractional difference between alive friendly and injured enemy 
ISAACAs relative to the total number of friendly ISAACAs in each 
sub-block. See Local Command. 

(n)_B_w_delta 

This defines the 3rd of four local command weights that prescribe the 
relative degree of importance the LC places on various measures of 
relative information contained in each block of sites within his command 
area. This third component represents the relative weight afforded to 
the fractional difference between injured friendly and alive enemy 
ISAACAs relative to the total number of friendly ISAACAs in each 
sub-block. See Local Command. 

(n)_B_w_garnma 

This defines the 4th of four local command weights that prescribe the 
relative degree of importance the LC places on various measures of 
relative information contained in each block of sites within his command 
area. This fourth component represents the relative weight afforded to 
the fractional difference between injured friendly and injured enemy 
ISAACAs relative to the total number of friendly ISAACAs in each 
sub-block. See Local Command. 

(n)_w_obey_GC_def 

This defines the n* blue local commander's relative weight afforded to 
obeying his GC's orders. It is a number between 0 and 1. See LC 
Response to GC Commands. 

(n)_w_help_LC_def 

This defines the n* blue local commander's relative weight afforded to 
moving toward and "assisting" another LC. It is a number between 0 
and 1. See LC Response to GC Commands. 

Red Local Command Parameters 

The Red Local Command Parameters section of the input data file 
consists of flags and variables defining the red ISAACA force's local 
command personality. Except for the fact that they obviously refer to 
red rather than blue parameters, all entries in this section of the data 
input file have exactly the same meaning as their blue counterparts, 
defined above. See Local Command for a thorough discussion of how all 
of these variables are used in the internal logic of the program. 
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Blue ISAACA Parameters 

The Blue ISAACA Parameters section of the input data file consists of 
flags and variables defining the blue ISAACAs. A sample fragment 
appears in figure 30. See Overview of ISAAC for a detailed discussion of 
all variables appearing in this section. 

numjblues 

This defines the total number of blue ISAACAs. The current version of 
ISAAC limits this number to 400 or less. 

squads 

This defines the total number of blue squads. This is a number between 
1 and a maximum of 10. 

num_per_squad 

This defines the number of blue ISAACAs per squad for each of the 10 
possible squads. Note that all 10 entries must appear in the input file, 
even if there are less than 10 squads (as defined by the squads 
parameter above). There is an internal check on the sum of the squad 
sizes that is performed by ISAAC to prevent possible overflow 
conditions. 

M_range 

This defines the movement range, rM, for each of the 10 possible blue 
ISAACA squads. Note that all 10 entries must appear in the input file, 
even if there are less than 10 squads (as defined by the squads 
parameter above). In the current version of ISAAC, rM can either be set 
to equal 1 (meaning that ISAACAs choose there move from within a 
3-by-3 box surrounding their current position) or rM can be set to equal 
2 (meaning that ISAACAs choose there move from within a 5-by-5 box 
surrounding their current position). See ISAACA Move Selection. 

personality 

This software "flag" specifies how the blue ISAACAs personality weight 
vector anvill be determined. If personality = 1, then the components of 
w are defined expliciüy by the appropriate parameter entries that 
appear below (see entries wl_a:B_alive_B through w6_i:B_R_goal). If 
personality = 2, then the components of zware randomly assigned. In 
this case, each blue ISAACA is assigned a different random weight 
vector. 
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Figure 30. Blue ISAACA Parameters 
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wl_a:B_alive_B 

This defines the 1st component of the alive blue ISAACA's personality 
weight vector. This first component represents the relative weight 
afforded by alive bluelSAACAs to moving toward alive blue (i.e., friendly) 
ISAACAs. It is a number between 0 and 100. (Recall that only the 
relative values among all six components matter here: the set 
{1,2,34,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w2_a:B_alive_R 

This defines the 2nd component of the alive blue ISAACA's personality 
weight vector. This second component represents the relative weight 
afforded by alive blue ISAACAs to moving toward alive red (i.e., enemy) 
ISAACAs. It is a number between 0 and 100. (Recall that only the 
relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w3_a:B_injrd_B 

This defines the 3rd component of the alive blue ISAACA's personality 
weight vector. This third component represents the relative weight 
afforded by alive blue ISAACAs to moving toward injured blue (i.e., 
friendly) ISAACAs. It is a number between 0 and 100. (Recall that only 
the relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w4_a:B_injrd_R 

This defines the 4th component of the alive blue ISAACA's personality 
weight vector. This fourth component represents the relative weight 
afforded by alive blue ISAACAs to moving toward injured red (i.e., 
enemy) ISAACAs. It is a number between 0 and 100. (Recall that only 
the relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
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squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w5_a:B_B_goal 

This defines the 5th component of the alive blue ISAACA's personality 
weight vector. This fifth component represents the relative weight 
afforded by alive blue ISAACAs to moving toward the blue (i.e., friendly) 
goal. It is a number between 0 and 100. (Recall that only the relative 
values among all six components matter here: the set {1,2,3.4,5,6} 
represents exactly the same set of weights as {10,20,30,40,50,60}, as far as 
ISAAC is concerned.) Note that all 10 entries must appear in the input 
file, even if there are less than 10 squads (as defined by the squads 
parameter above). See Personality Weight Vector. 

w6_a:B_R_goal 

This defines the 6th component of the alive blue ISAACA's personality 
weight vector. This sixth component represents the relative weight 
afforded by alive blue ISAACAs to moving toward the red (i.e., enemy) 
goal. It is a number between 0 and 100. (Recall that only the relative 
values among all six components matter here: the set {1,2,3,4,5,6} 
represents exactly the same set of weights as {10,20,30,40,50,60}, as far as 
ISAAC is concerned.) Note that all 10 entries must appear in the input 
file, even if there are less than 10 squads (as defined by the squads 
parameter above). See Personality Weight Vector. 

wl_i:B_alive_B 

This defines the 1st component of the injured blue ISAACA's personality 
weight vector. This first component represents the relative weight 
afforded by injured blue ISAACAs to moving toward alive blue (i.e., 
friendly) ISAACAs. It is a number between 0 and 100. (Recall that only 
the relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w2_i:B_alive_R 

This defines the 2nd component of the injured blue ISAACA's 
personality weight vector. This second component represents the 
relative weight afforded by injured blue ISAACAs to moving toward alive 
red (i.e., enemy) ISAACAs. It is a number between 0 and 100. (Recall 
that only the relative values among all six components matter here: the 
set {1,2,3,4,5,6} represents exactly the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
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squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w3_i:B_injrd_B 

This defines the 3rd component of the injured blue ISAACA's 
personality weight vector. This third component represents the relative 
weight afforded by injured blue ISAACAs to moving toward injured blue 
(i.e., friendly) ISAACAs. It is a number between 0 and 100. (Recall that 
only the relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exacdy the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w4_i:B_injrd_R 

This defines the 4th component of the injured blue ISAACA's 
personality weight vector. This fourth component represents the 
relative weight afforded by injured blue ISAACAs to moving toward 
injured red (i.e., enemy) ISAACAs. It is a number between 0 and 100. 
(Recall that only the relative values among all six components matter 
here: the set {1,2,3,4,5,6} represents exactiy the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w5_i:B_B_goal 

This defines the 5th component of the injured blue ISAACA's 
personality weight vector. This fifth component represents the relative 
weight afforded by injured blue ISAACAs to moving toward the blue (i.e., 
friendly) goal. It is a number between 0 and 100. (Recall that only the 
relative values among all six components matter here: the set 
{1,2,3,4,5,6} represents exacdy the same set of weights as 
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w6_i:B_R_goal 

This defines the 6th component of the injured blue ISAACA's 
personality weight vector. This sixth component represents the relative 
weight afforded by injured blue ISAACAs to moving toward the red (i.e., 
enemy) goal. It is a number between 0 and 100. (Recall that only the 
relative values among all six components matter here: the set 
{1,2,3,4,5,6}    represents    exactly    the    same    set    of   weights    as 

73 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10 
entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Personality 
Weight Vector. 

w7:B_loc_comdr 

If the blue local command option is enabled (i.e., if the parameter 
blue_local_flag is set equal to 1), and a given blue ISAACA is under the 
command of blue local commander, w7:B_loc_comdr effectively acts as 
the 7th component of that blue ISAACA's personality weight vector. This 
seventh component defines the relative weight afforded by a 
subordinate blue ISAACA to staying close to its local commander. It is a 
number between 0 and 1. See Subordinate ISAACAs under Local 
Command. 

w8:B_loc_goal 

If the blue local command option is enabled (i.e., if the parameter 
blue_local_flag is set equal to 1), and a given blue ISAACA is under the 
command of blue local commander, w8:B_loc_goal effectively acts as 
the 8th component of that blue ISAACA's personality weight vector. This 
seventh component defines the relative weight afforded by a 
subordinate blue ISAACA to obeying the orders issued by its local 
commander. It is a number between 0 and 1. See Subordinate ISAACAs 
under Local Command. 

defense_flag 

A software "flag" that regulates the notional defense option. If 
defense_flag = 1, the defense option is enabled (and defined by the 
parameters alive_strength and injured_strength below); if defense_flag 
= 0, the defense option is disabled. 

alive_strength 

If the notional defense option is enabled (i.e., if defense_flag = 1), then 
alive_strength defines the defensive strength of alive blue ISAACAs. The 
value of this parameter equals the number of "hits" (either by enemy or, 
if the fratricide option is enabled by setting blue_frat_flag = 1, friendly 
fire) that it takes to degrade an alive blue ISAACA to an injured state. 
The minimal (and default) value is 1. Setting alive_strength to a large 
positive number effectively renders blue ISAACAs impervious to fire. 
Note that all 10 entries must appear in the input file, even if there are 
less than 10 squads (as defined by the squads parameter above). See 
Notional Defense under ISAACA Combat. 

injured strength 

If the notional defense option is enabled (i.e., if defense_flag =1), then 
injured_strength   defines   the   defensive   strength   of   injured   blue 
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ISAACAs. The value of this parameter equals the number of "hits" 
(either by enemy or, if the fratricide option is enabled by setting 
blue_frat_flag = 1, friendly fire) that it takes to kill an already injured 
blue ISAACA. The minimal (and default) value is 1. Setting 
alive_strength to a large positive number effectively renders injured 
blue ISAACAs impervious to fire. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Notional Defense under ISAACA Combat. 

S_range 

This defines the sensor range, rs, for each of the 10 possible blue ISAACA 
squads. Note that all 10 entries must appear in the input file, even if 
there are less than 10 squads (as defined by the squads parameter 
above). S_range can take on the value zero (in which case the ISAACA 
"senses" nothing around itself) and any positive integer value. See 
ISAACA Ranges. 

F_range 

This defines the fire range, rF, for each of the 10 possible blue ISAACA 
squads. Note that all 10 entries must appear in the input file, even if 
there are less than 10 squads (as defined by the squads parameter 
above). F_range can take on the value zero (in which case the ISAACA 
is unable to "shoot" at anything) and any positive integer value. See 
ISAACA Ranges. 

COMMjlag 

This software "flag" regulates the communications option for blue 
ISAACAs. If COMM_flag = 1, the communications option is enabled 
(and defined by the parameters COMM_range and COMM_weight 
below); if COMMJElag = 0, the communications option is disabled. See 
Communication. 

COMM_range 

If the communications option is enabled (i.e., if COMMjlag =1), then 
COMM_range defines the range of blue ISAACA communications. See 
Communication. 

COMM_weight 

If the communications option is enabled (i.e., if COMM_flag =1), then 
COMM_weight defines the relative weight afforded by blue ISAACAs to 
using information communicated to them by other blue ISAACAs 
(within a communications range COMMjrarige of their position) in 
calculating their move selection penalty function. COMM_weight is 
typically assigned a real value between 0 and 1, though values greater 
than 1 can also be used to prescribe scenarios where blue ISAACAs give 
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greater weight to communicated information then to information 
existing within their own sensor field. See Communication. 

movement_flag 

This software "flag" controls the use of constraint thresholds (see 
ISAACA Adaptability). If movement_flag = 1, then additional 
constraints (defined by the next seven parameter entries T_RANGE 
through LCOMBATjnum) will be used. If movement_flag = 0, no 
additional constraints will be used (and the next seven entries will 
therefore be ignored for this run). 

T_range 

This defines the blue ISAACA's threshold range, rT; it can be assigned any 
positive integer value. The threshold range defines a boxed area 
surrounding the ISAACA with respect to which that ISAACA computes 
the numbers of friendly and enemy ISAACAs that play a role in 
determining what move to make on a given time step. This local 
decision-making process is described in the section ISAACA Adaptability. 

ArADVANCE_num 

This defines the alive blue ISAACA's advance threshold number, which 
represents the minimal number of friendly ISAACAs that must be 
within the threshold range (= Tjrange) for which the blue ISAACA will 
continue moving toward the enemy flag (if it has a nonzero default 
weight to do so). Note that all 10 entries must appear in the input file, 
even if there are less than 10 squads (as defined by the squads 
parameter above). See Advance Constraint in ISAACA Adaptability. 

A:CLUSTER_num 

This defines the alive blue ISAACA's cluster threshold number, which 
represents a friendly cluster ceiling such that if the blue ISAACA senses 
a greater number of friendly forces located within its threshold range (= 
T_range), it will temporarily set its personality weights for moving 
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the 
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the 
blue ISAACA is injured) to zero. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Cluster Constraint in ISAACA Adaptability. 

ArCOMBATnum 

This defines the alive blue ISAACA's combat threshold number, which fixes 
the local conditions for which the blue ISAACA will choose to move 
toward or away from possibly engaging an enemy ISAACA. Intuitively, 
the idea is that if the blue ISAACA senses that it has less than a 
threshold advantage of surrounding forces over enemy forces, it will 
choose to move away from engaging enemy ISAACAs rather than 
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moving toward (and, thereby, possibly engaging) them. The value of 
A:COMBAT_num must be a (positive or negative) integer. Note that all 
10 entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Combat 
Constraint in ISAACA Adaptability. 

LADVANCEnum 

This defines the injured blue ISAACA's advance threshold number, which 
represents the minimal number of friendly ISAACAs that must be 
within the threshold range (= Tjrange) for which the blue ISAACA will 
continue moving toward the enemy flag (if it has a nonzero default 
weight to do so). Note that all 10 entries must appear in the input file, 
even if there are less than 10 squads (as defined by the squads 
parameter above). See Advance Constraint in ISAACA Adaptability. 

I:CLUSTER_num 

This defines the injured blue ISAACA's cluster threshold number, which 
represents a friendly cluster ceiling such that if the blue ISAACA. senses 
a greater number of friendly forces located within its threshold range (= 
T_range), it will temporarily set its personality weights for moving 
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the 
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the 
blue ISAACA is injured) to zero. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Cluster Constraint in ISAACA Adaptability. 

LCOMBATnum 

This defines the injured blue ISAACA's combat threshold number, which 
fixes the local conditions for which the blue ISAACA will choose to 
move toward or away from possibly engaging an enemy ISAACA. 
Intuitively, the idea is that if the blue ISAACA senses that it has less than 
a threshold advantage of surrounding forces over enemy forces, it will 
choose to move away from engaging enemy ISAACAs rather than 
moving toward (and, thereby, possibly engaging) them. The value of 
A:COMBAT_num must be a (positive or negative) integer. Note that all 
10 entries must appear in the input file, even if there are less than 10 
squads (as defined by the squads parameter above). See Combat 
Constraint in ISAACA Adaptability. 

T_RANGE_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the blue ISAACA's threshold range, 
rT, will be assigned a random positive integer value. These parameter 
settings are used only if (1) the personality flag personality is set equal 
to one (so that the blue ISAACAs are assigned random personality 
weight vectors), and (2) the movement flag movement_flag is set equal 
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to 2 (so that blue ISAACA personalities are augmented by additional 
constraints). The threshold range defines a boxed area surrounding the 
ISAACA with respect to which that ISAACA computes the numbers of 
friendly and enemy ISAACAs that play a role in determining what move 
to make on a given time step. This local decision-making process is 
described in the section ISAACA Adaptability. 

AiADV_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the alive blue ISAACA's advance 
threshold number will be assigned a random positive integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
additional constraints). The advance threshold number represents the 
minimal number of friendly ISAACAs that must be within the threshold 
range (= Tjrange) for which the blue ISAACA will continue moving 
toward the enemy flag (if it has a nonzero default weight to do so). See 
Advance Constraint in ISAACA Adaptability. 

A:CLUS_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the alive blue ISAACA's cluster 
threshold number will be assigned a random positive integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
additional constraints). The cluster threshold number represents a 
friendly cluster ceiling such that if the blue ISAACA senses a greater 
number of friendly forces located within its threshold range (= 
Tjrange), it will temporarily set its personality weights for moving 
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the 
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the 
blue ISAACA is injured) to zero. See Cluster Constraint in ISAACA 
Adaptability. 

A:COMB_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the alive blue ISAACA's combat 
threshold number will be assigned a random integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
additional constraints). , which fixes the local conditions for which the 
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blue ISAACA will choose to move toward or away from possibly 
engaging an enemy ISAACA. Intuitively, the idea is that if the blue 
ISAACA senses that it has less than a threshold advantage of 
surrounding forces over enemy forces, it will choose to move away from 
engaging enemy ISAACAs rather than moving toward (and, thereby, 
possibly engaging) them. The values of 'm' and 'M' must be a (positive 
or negative) integers. See Combat Constraint in ISAACA Adaptability. 

I:ADV_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the injured blue ISAACA's advance 
threshold number-will be assigned a random positive integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
additional constraints). The advance threshold number represents the 
minimal number of friendly ISAACAs that must be within the threshold 
range (= T_range) for which the blue ISAACA will continue moving 
toward the enemy flag (if it has a nonzero default weight to do so). See 
Advance Constraint in ISAACA Adaptability. 

I:CLUS_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the injured blue ISAACA's cluster 
threshold numberwill be assigned a random positive integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
additional constraints). The cluster threshold number represents a 
friendly cluster ceiling such that if the blue ISAACA senses a greater 
number of friendly forces located within its threshold range (= 
T_range), it will temporarily set its personality weights for moving 
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the 
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the 
blue ISAACA is injured) to zero. See Cluster Constraint in ISAACA 
Adaptability. 

I:COMB_(m,M) 

These two values (m,M) define the lower (=m) and upper (=M) limits 
of the interval of values within which the injured blue ISAACA's combat 
threshold number will be assigned a random integer value. These 
parameter settings are used only if (1) the personality flag personality is 
set equal to one (so that the blue ISAACAs are assigned random 
personality weight vectors), and (2) the movement flag movement_flag 
is set equal to 2 (so that blue ISAACA personalities are augmented by 
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additional constraints). , which fixes the local conditions for which the 
blue ISAACA will choose to move toward or away from possibly 
engaging an enemy ISAACA. Intuitively, the idea is that if the blue 
ISAACA senses that it has less than a threshold advantage of 
surrounding forces over enemy forces, it will choose to move away from 
engaging enemy ISAACAs rather than moving toward (and, thereby, 
possibly engaging) them. The values of 'm' and 'M' must be a (positive 
or negative) integers. See Combat Constraint in ISAACA Adaptability. 

A:B_B_min_dist 

This defines the alive blue ISAACAs blue-blue minimum distance 
constraint, which represents the minimal distance that an alive blue 
ISAACA wants to maintain away from each blue (i.e., friendly) ISAACA 
in its sensor field. A:B_B_min_dist must be set equal to either zero (for 
no constraint) or to some positive integer value. Note that all 10 entries 
must appear in the input file, even if there are less than 10 squads (as 
defined by the squads parameter above). See Minimum Local-Distance 
Constraints in ISAACA Adaptability. 

A:B_R_min_dist 

This defines the alive blue ISAACAs blue-red minimum distance constraint, 
which represents the minimal distance that an alive blue ISAACA wants 
to maintain away from each red (i.e., enemy) ISAACA in its sensor field. 
A:B_R_min_dist must be set equal to either zero (for no constraint) or 
to some positive integer value. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Minimum Local-Distance Constraints in 
ISAACA Adaptability. 

AiB_B_goal_min 

This defines the alive blue ISAACAs blue/blue-goal minimum distance 
constraint, which represents the minimal distance that an alive blue 
ISAACA wants to maintain away from the blue (i.e., friendly) goal. 
A:B_B_goal_min must be set equal to either zero (for no constraint) or 
to some positive integer value. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Minimum Local-Distance Constraints in 
ISAACA Adaptability. 

I:B_B_rnin_dist 

This defines the injured blue ISAACAs blue-blue minimum distance 
constraint, which represents the minimal distance that an alive blue 
ISAACA wants to maintain away from each blue (i.e., friendly) ISAACA 
in its sensor field. I:B3_adn_dist must be set equal to either zero (for 
no constraint) or to some positive integer value. Note that all 10 entries 
must appear in the input file, even if there are less than 10 squads (as 
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defined by the squads parameter above). See Minimum Local-Distance 
Constraints in ISAACA Adaptability. 

I:B_R_min_dist 

This defines the injured blue ISAACA's blue-red minimum distance 
constraint, which represents the minimal distance that an alive blue 
ISAACA wants to maintain away from each red (i.e., enemy) ISAACA in 
its sensor field. I:B_R_min_dist must be set equal to either zero (for no 
constraint) or to some positive integer value. Note that all 10 entries 
must appear in the input file, even if there are less than 10 squads (as 
defined by the squads parameter above). See Minimum Local-Distance 
Constraints in ISAACA Adaptability. 

I:B_B_goal_min 

This defines the injured blue ISAACA's blue/blue-goal minimum distance 
constraint, which represents the minimal distance that an alive blue 
ISAACA wants to maintain away from the blue (i.e., friendly) goal. 
I:B_B^oal_min must be set equal to either zero (for no constraint) or 
to some positive integer value. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See Minimum Local-Distance Constraints in 
ISAACA Adaptability. 

shot_prob 

This defines the blue ISAACA's single-shot probability, p^, which 
represents the probability that a targeted enemy ISAACA is "hit." It is a 
number between 0 and 1. Note that all 10 entries must appear in the 
input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See ISAACA Combat. 

B_max_eng_num 

This defines the maximum number of simultaneously targetable red 
(i.e., enemy) ISAACAs by a blue ISAACA. If the number of targetable 
enemy ISAACAs within a blue ISAACA's sensor field is less than 
B_max_eng_num, the value of B_max_eng_num has no effect. If there 
are a greater number of targetable enemy ISAACAs within a blue 
ISAACA's sensor field than B_max_eng_num, then B_max_eng_num of 
them will be randomly targeted. Note that all 10 entries must appear in 
the input file, even if there are less than 10 squads (as defined by the 
squads parameter above). See ISAACA Combat. 

Red ISAACA Parameters 

The Red ISAACA Parameters section of the input data file consists of 
flags and variables defining red ISAACAs. Except for the fact that they 
obviously refer to red rather than blue parameters, all entries in this 
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section of the data input file have exactly the same meaning as their 
blue counterparts, defined in Blue ISAACA Parameters section above. 

Terrain Parameters 

The last section of the data input file contains parameters defining the 
notional terrain to be used for a given run (see figure 31). Note that 
this section consists of as many triplets of the form 'fa)-»26' 
(n)_center_x, and (n)_center_y' (where n = 1, 2, 3, and so on) as there 
are individual terrain blocks. For a discussion of how notional terrain is 
incorporated into ISAAC, see Notional Terrain. 

Figure 31. Terrain parameters 

(l)_size      2 
(l)_center_x  32 
(l)_center_y 50 
(2)^size      2 
(2)_center_x  44 
(2)_center^y   44 
(3)_size '    2 
(3)_center_x   58 
(3)_center_y  50 
(4)_size       2 
:(4)_centerix '54 ■■■. 
(4)_center_y   58 ■■■.,■:.:■ 
(5)_size       4 
(5)_center-x   42 
:(5)_Center^y:':54   ■::■■■■..: 

(n)_size 

This defines the linear side dimension of the n* terrain block. It can be 
assigned any positive integer value. 

(n)_center_x 

This defines the x-coordinate of the center of the n* terrain block (x=l 
defines the extreme left-hand-side of the notional battlefield). 
(n)_center_x can be assigned any positive integer value. 

(n)_center_y 

This defines the y-coordinate of the center of the n* terrain block (y=l 
defines the bottom edge of the notional battlefield). (n)_center_y can 
be assigned any positive integer value. 
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Sample Graphics Display 

Once the user has selected the form of output (to screen, file or both; 
see figure 24), ISAAC runs through its initialization routine and displays 
the main graphics page showing the disposition of forces on the 
notional battlefield. 

A sample graphics page is shown in figure 32. Observe that there are 
five main parts to the display: 

• A battlefield region, located at the center of the display, which 
contains a graphic representation of activity taking place on the 
notional battlefield. All ISAACAs are color coded: alive red 
ISAACAs are colored dark red, injured red ISAACAs are light 
red, alive blue ISAACAs are dark blue, injured blue ISAACAs are 
light blue and the red and blue flags appear as a solid large dark 
red and dark blue disks, respectively. A "time" counter (that 
shows the current iteration step) appears at the center bottom of 
the battlefield region. 

• A banner-display region, located at the top of the battlefield, which 
identifies the program and release version, the data file that is 
currendy open (on the left) and the size of the notional 
batdefield (on the right). 

• A red ISAACA data region, appearing to the left of the batdefield, 
which contains information summarizing the red ISAACA force 
(see below) 

• A blue ISAACA data region, appearing to the left of the batdefield, 
which contains information summarizing the blue ISAACA force 
(see below) 

• A "hot-key" menu region, appearing at the bottom of the 
batdefield, which contains a menu of "hot keys" that the user can 
use to interrupt a run at any time to perform a variety of 
functions (see below) 
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ISAACA Data Regions 

The ISAACA data regions, located to the left and right of the battlefield 
shown in figure 32, summarize the parameters that define the red and 
blue ISAACAs. As the labels to the right of the blue ISAACA data region 
show, data appearing in these regions are generally clustered in groups 
according to the kind of information they represent. From top to 
bottom, there are eight such data fields: 

• Squad Identifier 

• Range Parameters 

• Offensive/Defensive Parameters 

• Personality Weight Vector 

• Constraint Parameters 

• Reconstitution 

• Fratricide 

• Attrition 

Squad Identifier 

The squad identifier field is the first line above the colored bar that 
appears at the top of the red and blue ISAACA data regions. 

In figure 32, the red squad identifier is the line RED[ 1]: 100, while 
the blue squad identifier is the BLUE[ 1]: 50. This field conveys three 
pieces of information: (1) the color of the side (red ISAACA parameter 
values appear always on the left; blue ISAACA parameter values on the 
right); (2) the number of the particular squad (between 1 and 10) 
whose parameter values currently appear on screen; and (3) the size of 
that squad (i.e., the number of ISAACAs that initially made up that 
squad). Assuming that one or both sides consist of more than one 
squad, sets of parameter values corresponding to other squads may be 
displayed at any time during a run by pressing either the 'B' (for Blue) 
or 'E' (for rEd) "hot-keys"; see On-the-Fly Parameter Changes. 

Range Parameters 

The second data field consists of the set of ISAACA range parameters 
(see the section ISAACA Ranges for a detailed discussion): 

• S-range = sensor range, rs 

• F-range = fire range, rF 

• M-range = movement range, rM 
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• T-range = threshold range, rT 

• C-range = communications range, rc 

Offensive/Defensive Parameters 

The third data field consists of parameters defining an ISAACA's 
notional offensive and defensive capabilities (see the section ISAACA 
Combat for a detailed discussion): 

• p-shot = single-shot probability 

• MAX TGT = maximum number of simultaneously targetable 
enemy ISAACAs 

• DEF = defensive strength 

Note that DEF contains data in two columns: the first column defines 
the notional defensive strength for alive ISAACAs; the second column 
defines the defensive strength for injured ISAACAs. 

Personality Weight Vector 

The fourth data field (labeled P-WEIGHTS in figure 32) consists of 
parameters defining an ISAACA's personality weight vector (see the 
section ISAACA Personality for a detailed discussion): 

• AR = relative weight for moving toward Alive Red ISAACAs 

• AB = relative weight for moving toward Alive Blue ISAACAs 

• IR = relative weight for moving toward Injured Red ISAACAs 

• IB = relative weight for moving toward Injured Blue ISAACAs 

• RG = relative weight for moving toward Red Goal 

• BG = relative weight for moving toward Blue Goal 

Note that, as for the notional defense parameter DEF (see above), the 
personality data field contains data in two columns: the first column (on 
the left) defines a given component of the personality weight vector for 
alive ISAACAs; the second column (on the right) defines the defensive 
strength for injured ISAACAs. 

Constraint Parameters 

The fifth data field consists of the constraint parameters that augment 
an ISAACAs default personality (see the section ISAACA Adaptability for 
a detailed discussion): 
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• ADV = advance number threshold 

• CLS = cluster threshold 

• CBT = combat threshold 

• B_M = Minimal distance from Blue ISAACAs 

• R_M = Minimal distance from Red ISAACAs 

If the user constrains either red or blue ISAACAs from maintaining a 
prescribed minimum distance from own goal, one additional parameter 
may appear in this data field: G_M = Minimal distance from own Goal). 

Note that, as for the notional defense parameter DEF and parameters 
appearing in the personality field (see above), the constraint 
parameters data field contains data in two columns: the first column 
(on the left) defines a given component of the personality weight vector 
for alive ISAACAs; the second column (on the right) defines the 
defensive strength for injured ISAACAs. 

Reconstitution 

The sixth data field consists of a single entry, R_time, that defines the 
reconstitution time for red or blue ISAACAs. 

Recall that if the reconstitution flag reconst_flag is set equal to 1 (see 
General Battle Parameters of Contents of Data Input File), then the 
reconstitution time defines the number of iteration steps following a 
"hit" (either by enemy or friendly ISAACAs) such that if during that 
time interval a given ISAACA is not hit again, that ISAACAs state is 
reconstituted back to alive. See Reconstitution in ISAACA Combat. 

Fratricide 

The seventh data field consists of a single entry - either R_frat for red 
ISAACAs or B_frat for blue ISAACAs - that displays the cumulative 
number of fratricide hits that have occurred up to the current iteration 
step. 

Note that the red and blue fratricide data fields appear in the display 
only if the appropriate software flag (red_frat_flag for red and 
red_frat_flag for blue; see General Battle Parameters of Contents of Data 
Input File) has been set to "turn on" either the red or blue fratricide 
option. 

Attrition 

The eighth, and bottom-most, data field, is essentially a "tally-board" 
that keeps track of the remaining number (in gross and relative terms) 
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of either red or blue ISAACAs. A sample fragment, with explanatory 
text, is reproduced in figure 33 below. 

Figure 33. The Attrition data field of ISAAC'S main graphics display 

„i-r „J„ (nr color code for 
£!£££* ^,    ALIVE     INJURED   ^ injured ISAACAS 

# alive/squad-n     r      50/ 50        0 ■»   # injured/squad-n 
fraction alive        |     (100%) (   0%)      J fraction injured 

# alive/all squads  «■      50/ 50        0 ■»  # injured/all squads 
fraction alive        <      (100%) (   0%)      J fraction injured 

I ii 

"Hot-Key" Menu 

The colored words at the bottom of the battlefield comprise a menu of 
(black-colored) "hot keys"17 that the user can use to interrupt a run at 
any time to perform a variety of functions. There are sixteen such 
functions, accessed by the following keys (and defined according to the 
order in which they appear, left to right, on screen): 

• "A" (for StAts): toggles the calculation of statistics (see Data 
Collection). What specific data are accumulated depends on what 
statistic "flags" are set in ISAAC'S data input file (see Statistics 
Parameters in Contents of Input Data File). 

• "B" (for Blue): increments the squad number (if blue consists of 
more than one squad) and displays the squad's defining 
parameters in the blue ISAACA data region (to the right of the 
notional battlefield). 

• "C" (for Command): toggles various views of the local and/or 
global command structures for both red and blue ISAACAs. 
Assuming red and blue ISAACAs have both global and local 
commanders, then by default no command structure is initially 
shown on-screen. However, successive presses of the "C" key has 
the following effects: 

•    1st press: highlights each of the local commanders, using 
yellow for red and white for blue 

17 On a computer screen, the "hot-keys" are actually highlighted yellow instead of 
black. Keep in mind that because the colors white and black (the "background" color 
on the computer screen) have, for printing purposes, been reversed, not all colors 
appearing in graphics reproductions in this report and their actual computer screen 
counterparts match exactly. 
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• 2nd press: highlights each of the local commanders + draws 
the appropriate "boxed" local command area around each 
local commander (see Local Command) 

• 3rd press: highlights each of the local commanders + draws 
links between each local commander and each of its 
subordinate ISAACAs 

• 4th press: highlights each of the local commanders + 
highlights each local commander's subordinates + draws the 
appropriate "boxed" local command area around each local 
commander 

• 5th press: highlights each of the local commanders + draws 
links between each local commander and each of its 
subordinate ISAACAs + draws the appropriate "boxed" local 
command area around each local commander 

• 6th press: highlights each of the local commanders + 
highlights each local commander's subordinates + draws 
links between each local commander and each of its 
subordinate ISAACAs 

• 7th press: same as 6th strike + draws the appropriate "boxed" 
local command area around each local commander 

• 8th press: same as 7th + draws links between each local 
commander (explicitly showing their "connectivity" via the 
global commander) 

• "D" (for Data): toggles an on-screen prompt to interactively run 
another ISAAC data input file. 

• "E" (for REd): increments the squad number (if red consists of 
more than one squad) and displays the squad's defining 
parameters in the red ISAACA data region (to the left of the 
notional battlefield). 

• "F" (for Fast): enables the fast run mode, in which the screen is 
updated as rapidly as possible. For slowly single-stepping through 
a run, use the "S" hot-key (see below). 

• "H" (for SnapsHot): toggles an on-screen prompt to name an 
*.out file for storing a "snapshot" view of the current batde state 
of the system. This *.out file can then be "played-back" (i.e., 
re-displayed) by pressing the "P" hot-key (see below). 

• "L" (for CLose): closes all statistics files and stops all further data 
collection (see Data Collection). Data collection may be restarted 
by pressing "A" hot-key (see above). 
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• "Jsj»* (for RaNd): reinitializes the current run (as defined by 
entries made during an on-screen prompt session or via an input 
data file) with a random spatial distribution of all forces. 

• "O" (for Options): enables on-screen prompts for making 
on-the-fly changes to the values of any (or all) of the parameters 
defining the battle dynamics and/or red and blue ISAACAs. For 
details see On-the-Fly Parameters Changes. 

• "P" (for Play-Back): toggles an on-screen prompt to enter the 
name of an *.out file to "play-back" at high speed. See Play-Back 
of '*. out Files. 

• "Q" (for Quit): quits back to main menu, from which the user 
can select to either read-in a new data input file, play-back an 
*.out file or quit the program. 

• "R" (for Re-Run): reinitializes the current run (as defined by 
entries made during an on-screen prompt session or via an input 
data file) with exactly the same spatial distribution of all forces as 
the first time the current run was initialized. To randomize this 
initial distribution, use the "N" hot-key (see above). 

• "S" (for Step): enables the single-step run mode, in which the 
screen is updated a single iteration step at a time, each time the 
"S" hot-key is pressed. For a continuous (or fast) update, use the 
"F" hot-key (see above). 

• "T" (for Trace): toggles a continuous trace of red and blue 
movement. That is to say, old ISAACA positions are not erased as 
ISAACAs move throughout the battlefield. Such traces 
sometimes facilitate the visual detection of certain developing 
patterns. 

. • "U" (for SqUad): toggles a color highlighter (yellow for red, 
white for blue) for ISAACAs belonging to the particular squad 
whose parameters are currently displayed in the appropriate 
ISAACA data regions. See "B" and "E" hot-keys above. 

On-the-Fly Parameter Changes 

During an interactive run (i.e., a run that is initialized with a full data 
file such as ISAAC.dat instead of a simple playback of a previously 
recorded *.out file), the user can press the "O" hot-key at any time to 
interrupt the run and make on-the-fly changes to the values of any (or 
all) of the parameters defining the battle dynamics and/or red and blue 
ISAACAs. For example, the consequences to the unfolding pattern of 
behavior on the battiefield of altering the blue force's aggressiveness 
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and/or changing red's predisposition for "helping" injured friendly 
forces can - by changing the values of the appropriate parameters - be 
immediately displayed on screen. 

Enabling this On-the-Fly Parameter Change option by pressing the "O" key 
displays a menu of eight categories of changes that can be made (see 
figure 34). 

Figure 34. Main menu of the "on-the-fly" parameter change option 

PARAMETER CHANGE CATEGORIES 

<1> Combat Parameters 
<2> Red 1SAACA Parameters 
<3> Blue ISAACA Parameters 
<4> Red Local Command Parameters 
<5> Blue Local Command Parameters 
<6> Red Global Command Parameters 
<7> Blue Global Command Parameters 
<8> Statistics Calculations 

Selection (Quit = 0) ? 

Each category is accessed by pressing the appropriate number - "1" (for 
Combat Parameters) through "8" (for Statistics Calculations) - followed 
by <ENTER>, and contains a more specific list of parameters whose 
values can be changed on-the-fly. These are described in more detail 
below. 

Pressing zero (i.e., "0") from this main menu exits the menu, then 
queries the user if the altered parameter values should be included in a 
new ISAAC *.dat file. If the answer is "yes", the user is prompted for a 
new input data file name (the currently open data file can also be 
over-written). If the set of parameters whose values were changed 
during this session is such that the run must be restarted (parameters 
such as the size of the battlefield and the number of red and/or blue 
ISAACAs are in this category), then ISAAC reinitializes the current run 
and displays the main graphics screen (see figure 23). Otherwise, if the 
run can be smoothly continued from the point at which it was 
interrupted by the "O" key (but with new parameter values in place - 
ISAACA personality weight vectors, constrain thresholds, sensor and/or 
fire ranges, etc. all belong in this category of parameter values), ISAAC 
first queries the user whether such a continuation is desired, or whether 
the user nonetheless wishes to restart the run using the new parameter 
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values. If the user selects to restart the run rather than to continue the 
old one, ISAAC queries whether the user wants to restart using the 
original spatial distribution of red and blue forces (i.e., effectively using 
the "old" random number seed) or wishes to select a new random 
number seed to initialize the run. 

Figure 35. Screen shot of the "on-the-fly" Combat Parameter change 
sub-menu 

COMBAT PARAMETERS 

<1> Size of Battlefield 
<2> Initial Distribution of Forces 
<3> Termination Condition 
<4> Move Sampling Order 
<5> Combat Adjudication 
<6> Reconstitution 
<7> Terrain 
<8> Goal Positions 
<9> Fratricide 

Selection (Quit = 0) ? 

Combat Parameters 

Pressing the "1" key (followed by <ENTER>) from the main menu that 
appears after interrupting a run by pressing the "O" hot-key, displays a 
sub-menu containing nine combat-related parameter choices (see 
figure 35): 

• </> Size of Battlefield, which prompts the user to adjust the size of 
the notional batüefield. 

• <2> Initial Distribution of forces, which prompts the user to define 
a new initial configuration. 

• <3> Termination Condition, which prompts the user to choose a 
new termination condition. 

• <4> Move Sampling Order, which prompts the user to select a new 
sampling order (fixed or random sampling; see Move Sampling 
Order). 
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• <5> Combat Adjudication, which prompts the user to specify the 
maximum number of simultaneously targe table enemy ISAACAs. 

• <6> Reconstiiution, which prompts the user to decide whether the 
reconstitution option will be used. If "yes", then the user is 
further prompted for red and blue reconstitution times; see 
ISAACA Reconstitution. 

• <7> Terrain, which prompts the user to decide whether the 
terrain option will be used. If "yes", then the user is further 
prompted for terrain block sizes and positions; see Terrain. 

• <8> Goal Positions, which prompts the user to select new red and 
blue goal positions 

• <9> Fratricide, which prompts the user to decide whether the 
fratricide option will be used. If "yes", then the user is further 
prompted for red and blue fratricide radii and fratricide 
probability of hit; see ISAACA Fratricide. 

The user can change the value of as many parameters as desired. When 
finished, pressing zero (follows by <ENTER>) returns the user to the 
main On-the-Fly Parameter Change menu. 

Red ISAACA Parameters 

Pressing the "2" key (followed by <ENTER>) from the main menu that 
appears after interrupting a run by pressing the "O" hot-key, displays a 
sub-menu containing 27 red-ISAACA-related parameter choices: 

• <1> Number of Red Forces, which prompts the user to adjust the 
number of red ISAACAs. If there are more than one squad, the 
user is prompted to adjust the size of each squad and/or alter 
the number of squads. 

• <2> Movement Range, which prompts the user to select the 
movement range (either "1" or "2"). 

• <3> Personality, which prompts the user to set the personality flag 
(either 1 for user-defined, or 2 for random). If the user-defined 
option is selected, the user is prompted for the values of the 
components of red's personality weight vector; see ISAACA 
Personalities). 

• <4> Weight Wj, which prompts the user to enter a value for red's 
alive and injured weights for moving toward alive red. 

• <5> Weight w2, which prompts the user to enter a value for red's 
alive and injured weights for moving toward alive blue. 
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• <6> Weight w3, which prompts the user to enter a value for red's 
alive and injured weights for moving toward injured red. 

• <7> Weight w4, which prompts the user to enter a value for red's 
alive and injured weights for moving toward injured blue. 

• <8> Weight w5, which prompts the user to enter a value for red's 
alive and injured weights for moving toward red goal. 

• <9> Weight w6, which prompts the user to enter a value for red's 
alive and injured weights for moving toward blue goal. 

• <10> Weight Wy, which prompts the user to enter a value for red's 
weight for moving toward the local commander (if the local 
commander option is set; see Local Command in Contents of Input 

Data File). 

• <1I> Weight Wg, which prompts the user to enter a value for red's 
weight for obeying its local commander (if the local commander 
option is set; see Local Command in Contents of Input Data File). 

• <12> Sensor Range, which prompts the user to enter a value for 
red's sensor range. 

• <13> Fire Range, which prompts the user to enter a value for red's 
fire range 

• <14> Communications, which prompts the user to set red's 
communication option on or off. 

• <15> Communications Range, which prompts the user to enter a 
value for red's communication range (see ISAACA 
Communication). 

• <16> Communications Weight, which prompts the user to enter a 
value for red's communication weight (see ISAACA 
Communication). 

• <17> Movement Constraints, which prompts the user to set red's 
movement constraint flag (1 meaning that constraints will be 
used, 0 that no further constraints will be used; see ISAACA 
Adaptability). 

• <18> Threshold Range, which prompts the user to set red's 
threshold range; see ISAACA Adaptability. 

• <19> Advance Threshold, which prompts the user to set red's 
advance threshold range; see ISAACA Adaptability. 

• <20> Cluster Threshold, which prompts the user to set red's cluster 
threshold range; see ISAACA Adaptability. 
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• <21> Combat Threshold, which prompts the user to set red's 
combat threshold range; see ISAACA Adaptability. 

• <22> Min Distance from Red, which prompts the user to set red's 
minimum-distance-from-red constraint; see ISAACA Adaptability. 

• <23> Min Distance from Blue, which prompts the user to set red's 
minimum-distance-from-blue constraint; see ISAACA Adaptability. 

• <24> Min Distance from Red Goal, which prompts the user to set 
red's minimum-distance-from-red-goal constraint; see ISAACA 
Adaptability. 

• <25> Probability of Shot, which prompts the user to set red's 
single-shot probability. 

• <26> Max Number of Engagements, which prompts the user to set 
red's maximum number of simultaneous enemy targets. 

• <27> Defense ('armor'), which prompts the user to set red's alive 
and injured defensive strength (see Notional Defense in ISAACA 
Combat). 

Blue ISAACA Parameters 

Pressing the "3" key (followed by <ENTER>) from the main menu that 
appears after interrupting a run by pressing the "O" hot-key, displays a 
sub-menu containing various blue-ISAACA-related parameter choices. 
Except for the fact that this sub-menu obviously references blue rather 
than red parameters, all Blue ISAACA Parameters menu choices have 
exacdy the same meaning as their red counterparts, defined above. 

Red Local Command Parameters 

Pressing the "4" key (followed by <ENTER>) from the main menu that 
appears after interrupting a run by pressing the "O" hot-key, displays a 
sub-menu containing twenty red-local-command-related parameter 
choices:18 

• <1> Local command flag (on/off), which prompts the user to set 
red's local command flag ("1" means that local command will be 
used, while "0" that it will not be used; see Local Command). If 
the local command flag is enabled, the user is prompted for the 
number of desired local commanders and to enter values for all 
local command parameters. 

18     Note that if there is currently more than one red local commander defined, the 
user is prompted to enter values for each local commander, in turn. 
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• <2> Patch type, which prompts the user to set the red local 
commander's patch type ("1" means that the command area will 
be partitioned into 3-by-3 matrix of sub-blocks, while "2" means 
that it will be partitioned into 5-by-5 matrix of sub-blocks); see 
Local Command. 

• <3> Patch-Choice flag, which prompts the user to set the red local 
commander's patch-choice flag ("1" means that if two or more 
patches yield the same penalty value, the local commander will 
choose among that set of same-penalty patches randomly, while 
"2" means that the actual patch chosen will be the one closest to 
the previously selected patch). See Local Command. 

• <4> Weight wv which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward alive red. 

• <5> Weight w2, which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward alive blue. 

• <6> Weight w3, which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward injured red. 

• <7> Weight w4, which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward injured blue. 

• <8> Weight ws, which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward red goal. 

• <9> Weight w6, which prompts the user to enter a value for the 
red local commander's alive and injured weights for moving 
toward blue goal. 

• <10> Sensor Range, which prompts the user to enter a value for 
the red local commander's sensor range. 

• <11> Local command radius, which prompts the user to enter a 
value for the red local commander's local command radius. 
Recall that this effectively defines the size of one of the 
sub-blocks into which the command area is partitioned. See Local 
Command. 

• <12> ISAACAs under command, which prompts the user to enter a 
value for the number of subordinate ISAACAs under the i* red 
local commander's command. 
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• <13> Threshold Range, which prompts the user to enter a value for 
the red local commander's threshold range. See ISAACA 
Adaptability. 

• <14> Advance Threshold, which prompts the user to enter a value 
for the red local commander's advance threshold. See ISAACA 
Adaptability. 

• <15> Cluster Threshold, which prompts the user to enter a value 
for the red local commander's cluster threshold. See ISAACA 
Adaptability. 

• <16> Combat Threshold, which prompts the user to enter a value 
for the red local commander's combat threshold. See ISAACA 
Adaptability. 

• <17> Alpha, which prompts the user to enter a value for the red 
local commander's alpha command weight. See Local Command. 

• <18> Beta, which prompts the user to enter a value for the red 
local commander's beta command weight. See Local Command. 

• <19> Delta, which prompts the user to enter a value for the red 
local commander's delta command weight. See Local Command. 

• <20> Gamma, which prompts the user to enter a value for the red 
local commander's gamma command weight. See Local Command. 

Blue Local Command Parameters 

Pressing the "5" key (followed by <ENTER>) from the main menu that 
appears after interrupting a run by pressing the "O" hot-key, displays a 
sub-menu containing various blue-local-command-related parameter 
choices Except for the fact that this sub-menu obviously references blue 
rather than red parameters, all Blue Local Command Parameters menu 
choices have exactly the same meaning as their red counterparts, 
defined above. 

Red Global Command Parameters 

This sub-menu is not yet implemented in the current version of ISAAC. 

Blue Global Command Parameters 

This sub-menu is not yet implemented in the current version of ISAAC. 

Statistics Calculations 

This sub-menu is not yet implemented in the current version of ISAAC. 
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Sample Runs 
The ISAAC that is described in this report is an interim version of a 
"work in progress." It represents but a skeletal fragment of what will 
eventually become the "core engine" of a much more sophisticated set 
of tools. It is encouraging to note that, however, that even at this early 
juncture, ISAAC already has an impressive repertoire of self-organized 
emergent behaviors: 

• Forward advance 

• Frontal attack 

• Local clustering 

• Penetration 

• Retreat 

• Attack posturing 

• Containment 

• Flanking Maneuvers 

• Defensive posturing 

• "Guerilla-like" assaults 

• Encirclement of enemy forces 

• many more ... 

Moreover, ISAAC frequently displays behaviors that appear to involve 
some form of "intelligent" division of red and blue forces to deal with 
local "firestorms" and skirmishes, particularly those forces whose 
personalities have been "evolved" (via the Genetic Algorithm Evolver) to 
perform a specific mission (see below). It must be remembered that 
such behaviors are not hard-wjred-in but are effectively an emergent 
property of a decentralized and nonlinear local dynamics. 

No one has yet provided a satisfactory formal definition of emergence. 
Loosely speaking, emergent behavior refers to the group behavior of 
two or more ISAACAs that arises from, but is also qualitatively different 
from, the collective interactions of the individual ISAACAs. For 
example, sample run #4 shows how a slow clockwise precession of a 
tight cluster of combatants locked in close combat can emerge out of 
the collective interactions of enemy ISAACAs. Sample run #7 shows how 
a seemingly well orchestrated "encircling" maneuver can spontaneously 
emerge out of the combined actions of very many ISAACAs, all of whom 
individually want only to fight the enemy and move toward the enemy's 
flag. 

Figures 36 through 50 provide color "snapshots" of several sample runs 
using ISAAC. Table 7 also gives short descriptions. A majority of these 
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nans can be played back in their entirety by using the stand-alone 
"play-back" program ISAAC_PB (see table 4). The files 
LOCALCMD.out, GLBALCMD.out and BATTLEl.out, which were 
generated using a later version of ISAAC, must be played back by 
choosing option 2 on ISAAC_CE's main options screen (see figure 24). 

Note that while red and blue ISAACAs are appropriately colored red 
and blue in the following figures, ISAAC actually uses four colors for 
rendering runs on a computer screen: bright red for alive red ISAACAs, 
bright blue for alive blue ISAACAs, dark red for injured red ISAACAs and 
dark blue for injured blue ISAACAs. 

Table 7. ISAAC output files corresponding to the sample runs shown in 
figures 36 through 50 

Sample Run      Figure    ISAAC output file1 Brief Description 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

36 MISMATCH.out 

37 FLUID_l.out 

38 FLUID_2.out 

39 PRECESS.out 

40 GOAIDEFl.out 

41 GOALDEF2.out 

42 CIRCLE.out 

43 PTRESTMl.out 

44 FERESTM2.out 

45 SENSOR.out 

47 LOCALCMD.out 

49 GLBALCMD.out 

50 BATTLE.out 

Output files are provided on 

One side "outmatches" the other 

Fluid-like collision between roughly equal force 
strengths 
Fluid-like collision between two large forces 

Battle is constrained to a small pocket that slowly 
precesses in clockwise direction 
Successful "goal-defense" by red 

Unsuccessful    "goal-defense"     by    blue;     red's 
behavior   is   suggestive   of   an   abrupt   "phase 
transition" 
Red finds a way to encircle blue 

Series of local firestorms 

Same   system   as   in   FIRESTMl.out   but  blue's 
communications option is turned 'on' 
How well does red do against blue as red's sensor 
range is systematically increased relative to that of 
blue? 
Sample run with a very timid red local com- 
mander; blue has no command structure 
Sample run with a very timid red global com- 
mander commanding three local commanders; 
blue has no command structure 
A "mini-battle" with 400 ISAACAs per side 

the accompanying disk. 
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Sample Run #1: MISMATCH.out 

Snapshot views of the first sample run are shown in figure 36. A 
"play-back" of this sample can be viewed by running ISAAC_PB using 
MISMATCELout as input. 

The main points of interest in this file are: 

1. The very different sensor (= rs) and fire ranges (= rF) possessed by red 
and blue ISAACAs: red ISAACAs have rs=2 and rF=l while blue 
ISAACAs have rs=7 and rF=5. Thus blue can "see" much farther 
than red (effectively anything within a 14-by-14 "box" as 
compared to a 4-by-4 box by red), and can shoot from a much 
farther distance (anything within a 10-by-10 box as compared to 
a 1-by-l box for red). 

2. While red's decision-making process is driven purely by its default 
personality weight vector (wreci = (10,40,10,40,0,50)), blue decides 
upon its moves by both using the same set of personality weights as red 
and by incorporating additional movement constraints. Specifically, 
each blue ISAACA will choose to (i) move toward the red flag 
only when it is surrounded by at least 4 friendly ISAACAs 
(within a threshold range rT=3 units), (ii) it will no longer move 
closer to friendly ISAACAs if it is surrounded by more than 10 
friendly ISAACAs, and (iii) it will move toward engaging an 
enemy in combat only if it senses a force advantage of 7 friendly 
ISAACAs over the enemy. Moreover, blue ISAACAs try to 
maintain a minimum distance of 1 unit away from friendly 
ISAACAs and a minimum distance of 2 units away from enemy 
ISAACAs. The blue force can therefore be characterized as 
having a much better "situational awareness" than the red force 
(owing to its much large sensor range) and having a 
considerably less aggressive nature. The last part is so because 
while red ISAACAs will generally tend to engage all enemy 
ISAACAs within their sensor and fire ranges, blue ISAACAs will 
only choose to do so when they "know" that they have a 
significant local force advantage. 

The initial configuration of the 100-by-100 notional battlefield at time 
t=l is shown at the top of figure 36. 

Snapshot views of the "batüe" are provided for times t = 25, 35, 42, 65, 
75, 85, 95, 110, and 127. Each of these frames tells a part of the 
unfolding story. 

The frame at time t=25 shows that blue has progressed towards its "goal" 
(the red flag) farther than red has progressed towards its goal (the blue 
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flag). This is due mainly to red's tendency to "cluster" with nearby red 
ISAACAs. Blue ISAACAs, on the other hand, effectively put a clamp on 
clustering whenever the number of nearby friendlies exceeds a certain 
number (10 friendlies within a distance of 3 units). When this threshold 
is exceeded, blue ISAACAs are able to devote their full attention to 
moving toward their goal. It is difficult to see in the figure, but there is a 
single red ISAACA near the center of the frame that has moved quickly 
forward. It is able to do so because it was initially too far removed from 
friendly ISAACAs to cluster with them. 

The frame at time t=35 shows that this single red ISAACA. is met by the 
large cluster of forward moving blue ISAACAs. It is not entirely clear 
from this image, but as soon as the blue ISAACAs sense the presence of 
the lone enemy, they quickly move to surround and engage the enemy 
in combat. The effect of this rapid clustering around the enemy is more 
evident in the frame at time t=42, which shows the single red ISAACA 
completely surrounded by blue forces. Meanwhile, the remaining red 
ISAACAs are slowly moving in the direction of the blue flag. Because of 
their limited sensor range, none of these red forces has yet "seen" any 
enemy ISAACAs. 

The frame at time t=65 shows that the large cluster of blue ISAACAs has 
destroyed the lone red ISAACA that was seen to have rushed quickly 
forward in the frames at t=25 and t=35. ISAAC'S full screen view (such as 
the one shown in figure 23) would show at this point that blue has by 
this time managed, from long range, to kill 1 red ISAACA and injure 
another. However, because of red's inferior sensor and fire ranges, red 
has been unable to injure any blue forces thus far. 

The frame at time t=75 shows a snapshot image of some "close-combat," 
and is the first image in which there is some overlap in the clusters of 
red and blue ISAACAs. At this point, red forces have been significantly 
depleted - a total of 5 have been killed and another 6 injured. No blue 
ISAACAs, however, have yet even been injured. This is again due to 
blue's superior sensor and fire ranges. While each red ISAACA can only 
engage a blue if that blue occupies an immediately adjacent site, blue 
ISAACAs can engage any red that is within a 10-by-10 box around it. 

The frame at time t=85 shows that the large cluster of blue ISAACAs 
seen in the previous frames has broken up into several disjoint parts 
that appear to "surround" the red ISAACAs. Keep in mind, that as these 
blue forces surround their enemy, they continue moving toward the red 
flag. Moreover, as the blue ISAACAs continue moving forward they are 
able to maintain a significant power projection against the red 
ISAACAs. By time t=85, 8 red ISAACAs have been killed, and another 
13 injured. At the same time, no blue ISAACAs have yet been injured. 

The next two frames, at times t=110 and t=127, show the conclusion of 
this battle. Blue ISAACAs continue to "maneuver around" the red 
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forces, keeping their distance from and engaging their enemy from 
long range. The sequence ends at time t=127 when the first blue 
ISAACA has reached the red flag. At the end of the batüe, blue has 
killed 16 red ISAACAs and injured 15; red has managed to injure only 
one blue ISAACA and kill none. 

It is tempting to conclude from the last few frames of figure 36 that the 
blue side has devised an impromptu strategy to deal with the enemy. 
Blue's strategy seems to be to exploit its superior sensor and fire ranges by 
"intelligentiy" splitting up its force and continuing to advance toward 
the red goal while surrounding, and pummeling, the enemy from a 
long standoff range. Keep in mind, however, that this seemingly 
centrally-directed behavior (as is all the behavior seen in the succeeding 
figures), stems solely from a strictiy decentralized dynamics. 
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Figure 36. Snapshot views of MISMATCH . out 
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Sample Run #2: FLUID_l.out 

Figure 37 shows an example of a very different kind of "evolution." A 
"play-back" of this run can be viewed by running ISAAC_PB using 
FLUID_l.out as input. 

The initial state of the battle is shown at the top of the figure, and shows 
that, as in sample run #1, the red and blue ISAACAs initially occupy 
random positions in diagonally opposite corners at time t=l. Notice 
that while the blue ISAACA parameters are essentially unchanged from 
sample run #1 (except for being even less aggressive this time around, by 
having a combat threshold of 7, and wanting to maintain a minimum 
distance of 2 units from red ISAACAs), the red force personality is very 
different from the first sample run. Unlike the case in the first sample 
run, where red's sensor and fire ranges were very small compared to 
that of blue, here red's sensor and fire ranges equal blue's. Moreover, 
while red's default personality was the same as blue's in sample run #1, 
here each red ISAACA's personality is completely random. Finally, red's 
decision-making process is also driven by additional constraints: each 
red ISAACA will choose to (i) move toward the blue flag only when it is 
surrounded by at least 1 friendly ISAACA (within a threshold range rT=3 
units), (ii) it will no longer move closer to friendly ISAACAs if it is 
surrounded by more than five friendly ISAACAs, and (iii) it will engage 
in combat only if it senses an equal relative local force strength. Red 
ISAACAs also wish to maintain a minimum distance of 2 units away 
from friendly ISAACAs and a minimum distance of 1 unit away from 
enemy ISAACAs. Both sides start out with force strengths of 90 
ISAACAs. 

As the reader can see either by mentally reconstructing the actual "flow" 
of the battle from the six snapshots shown in figure 37 (which 
encompass events from times t=35 to t=155), or by actually viewing this 
sequence in its entirety by using ISAACJPB to play back the file 
FLUID_l.out, combat between these two particular personalities 
proceeds as though it were a clash between two viscous fluids. Forces 
making up the two sides collide head-on but are dispersed and aligned 
along two narrow columns at time t=55. The two sides continue battling 
each other in this manner for a relatively large number of iterations 
(time t=55 to t=110 in the figure). Notice that, at time t=85, several blue 
ISAACAs have "found" a way to sneak around the bottom of red's 
column-like formation. In the next frame, at time t=110, this group can 
be seen advancing toward red's flag unchallenged, because it is unseen 
by the red ISAACAs making up red's central column. By time t=130, a 
cluster of red ISAACAs breaks away from what used to be the central 
column and advances towards blue's flag. Meanwhile, blue forces 
continue advancing toward red's flag at the bottom of the frame. 
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Note that red's column appears slightly more dispersed than does 
blue's. The reason for this is that whereas blues want to be as close to 
one another as other extant local conditions permit), reds want to 
maintain a minimum distance of D=2 units between themselves and 
other reds. This continual local 'josding for elbow room" renders red's 
column less finely structured. 

An unexpected novel feature emerges in the frame at time t=155. The 
circular cluster of blue ISAACAs at the upper left of the lower right 
quadrant of the battlefield in fact makes up a small circularly rotating 
"vortex" that lasts for a few iterations. Another, smaller vortex forms 
later near the bottom of the battlefield (but is not shown in this figure). 

At the end of the "battle" reproduced in figure 37, red ISAACAs have 
managed to kill 3 blues and injure another 12; blue ISAACAs have 
killed 4 reds and injured 10. 
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Figure 37. Snapshot views of FLUID l. out 
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Sample Run #3: FLUID_2.out 

Figure 38 shows a few snapshots taken from a play-back of the file 
FLUID_2.out. 

For this sample run - the first part of whose evolution is reminiscent of 
a collision between two viscous fluids (see Sample Run #2: FLUW_l.out 
for comparison) - there are 200 ISAACAs per side, and red and blue 
ISAAGAs share the same sensor and fire ranges (equal to 5 and 3, 
respectively). From a personality-weight perspective, blue ISAACAs are 
relatively aggressive, in that they care little about "staying close" to 
friendly ISAACAs and are motivated most strongly by moving toward 
injured enemies. The red force, by comparison, distributes its 
motivation more evenly among alive and injured red and blue 
ISAACAs. Note - from the red and blue combat thresholds - that while 
red is more apt to start local skirmishes than blue, each is more prone 
to engage in combat than their counterparts in the previous example. 
Note also that because of their different advance threshold constraints, 
red and blue forces have different styles of moving toward their enemy's 
flag: blue moves as essentially one large cluster while red self-organizes 
into more ordered "columns." 

Figure 38 shows that, initially, the two forces collide in what is best 
described as "fluid-like" fashion. However, in contrast to the previous 
sample run's simple columnar style of collision - in which the two forces 
buttress up against each other along a single "boundary" before a few 
red and blue ISAAGAs manage to "escape" from the top and bottom, 
respectively - the collision of the two forces in this sample run is more 
complex. Here, the combined mass appears to be arranged along a 
well-defined but nonlinear and undulating boundary, that strains under 
pressure near several "choke points." One of these choke points (near 
the bottom right of the combined mass) finally breaks around t ~ 90, 
splitting the combined mass into two disjoint parts. A second choke 
point (near the top left of the larger central mass) breaks around t ~ 
114. In the immediately succeeding steps, clusters of red and blue 
ISAACAs combine and break apart a few more times before some 
manage to find their way to their enemy's flag. 
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Figure 38. Snapshot views of FLUID 2. out 
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Sample Run #4: PRECESS.out 

Figure 39 shows a few snapshots taken from a play-back of the file 
PRECESS.out, and represents the first simple example of an emergent 
behavior; namely, a slow clockwise precession of two forces locked in 
local combat. 

In this sample run, the two sides are equipped with the same sensor and 
fire, ranges (equal to 5 and 3, respectively), but have markedly different 
personalities and additional movement constraints. Red ISAACAs favor 
moving toward alive and injured reds (with relative weights of 25 and 
75, respectively) over moving toward alive and injured blue forces (10 
and 25, respectively). This means that red forces are 7-1/2 times more 
"concerned" with moving towards injured red forces than they are 
moving toward alive blue, and 3 times more concerned with moving 
towards injured red forces than toward injured blue forces. In contrast, 
blue ISAACAs are considerably more concerned with moving toward 
red forces than toward friendlies. In particular, blue ISAACAs are 3-1/2 
times more concerned with moving towards alive red forces than either 
alive or injured blue forces, and 8 times as concerned with moving 
toward injured red forces. 

Red and blue forces for this scenario also differ markedly in their 
respective sets of movement constraint conditions. Red forces, for 
example, advance toward the goal only if surrounded by at least 5 
friendly forces within a threshold range rT=2, continue moving toward 
friendly forces until surrounded by at least 10 reds, and move to engage 
an enemy ISAACA only if they sense a local numerical advantage of 4 
ISAACAs over blue forces. Moreover, red forces wish to maintain a 
minimum distance of 3 from all enemy ISAACAs. In contrast, blue 
forces advance toward the red flag even when surrounded by a single 
friendly ISAACA within a threshold range rT=3, they continue to cluster 
with friendly forces only until they are surrounded by at least 3 blues, 
and move to engage an enemy ISAACA even if they sense that they are 
locally outnumbered by the enemy by 5 ISAACAs. Moreover, they want to 
get as close to red forces as possible (i.e., the minimum distance is set to 
0). 

This stark contrast in personalities can be summarized by saying that, 
for this run, reds want to avoid a fight as badly as blues want to start one. And 
once a fight has started, and blues sense injured enemy ISAACAs, blues 
desire to "finish off' the enemy even more than they want to advance 
towards red's flag. 

As in previous sample runs, red and blue ISAACAs are initially 
positioned in diagonally opposite corners (see the top frame at time 
t=l). The next frame shows the two sides meeting near the center at 
time t=37. Red forces are clustered into two advancing groups, while 
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blue forces consist of one large, and widely dispersed, cluster. What is 
interesting about this particular sample run, and the way in which these 
two very different personalities "interact," is summarized by the last 
three frames of the battle, shown for times t=75, 125 and 250. Notice 
that, unlike any of the previous sample runs, here the two forces remain 
essentially locked together in local combat, moving slowly around the 
upper half of the battlefield. Except for a few stray "leakers" and an 
occasional group of a few blue ISAACAs that chooses to leave the main 
battle and head toward red's flag, there are no scattered skirmishes 
during this run. Almost all of the combat takes place within the large 
cluster of red and blue forces. Notice also that this slow processional of 
the locked-together cluster evolves over a relatively long time; the 
cluster remains well-formed even up to the very last frame shown for 
this run, showing the state of the battle at time t=250. It is also 
interesting to note that the collective motion of the locked-together 
cluster of red and blue ISAACAs is driven first by blue's desire to engage 
(and finish-off) red forces coupled with red's desire to flee, and later - 
as red gets closer to the blue flag - by red's desire to get to its goal 
(while still being chased by blues). 

At the end of this "battle," red ISAACAs have managed to kill 25 blues 
and injure another 27; blue ISAACAs have killed 29 reds and injured 
24. A large number of blues have also found their way to, and are 
clustered around, the red flag. 
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Figure 39. Snapshot views of PRECESS . out 
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Sample Run #5: GOALDEFl.out 

Figure 40 shows a few snapshots taken from a play-back of the file 
GOALDEFl.out. 

This, and the next, sample run illustrate how ISAAC can be used to 
explore simple "goal defense" scenarios. In this run-, red defends its own 
flag with personality weight vector waiive = (0,40,10,40,10,0. Notice 
that the first (i.e., a^ive.i) and last (i-e., waivefi) components of this weight 
vector are equal to zero: w^vel = 0 means that red ISAACAs initially do 
not see other red ISAACAs; w^e 6 = 0 means that the red forces are not 
"motivated" by moving toward the blue flag. Since w^ve5 > 0, however, 
red ISAACAs are interested in staying near their own flag. In particular, 
since G_M = 35, red ISAACAs "desire" to be a distance D = 35 units away 
from their own flag (recall that the parameter G_M - listed near the 
bottom of red's constraint parameter data field - represents the desired 
distance from own goal; see Contents of ISAAC'S Input Data File). The first 
snapshot in figure 40 (for time t = 25) shows that red prepares for blue's 
attack by setting up its forces along a semi-circle surrounding its flag. 
Note that red is given an advantage over blue in terms of both its sensor 
(rs,red = 5 compared with rSbIue = 3) and fire ranges (rFred = 3 compared 
wit'hrFblue = 2). 

Subsequent snapshots of this sample run show that red is largely 
successful in defending its goal against blue forces. As soon as blue 
forces appear within red's sensor range (t = 50), red forces move out to 
intercept. As red:blue close combat ensues, and red's ranks are thinned 
near the center of the semi-circle, reinforcement red ISAACAs move in 
from the edges. As blue tries to penetrate the semi-circular defense 
posture, red forces move toward and surround the enemy. 

Figure 40 shows that by time t = 125, red has successfully prevented any 
of the blue forces from reaching the red flag, and has in fact managed 
to kill most of the attacking force. 
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Figure 40. Snapshot views of GOALDKFI . out 

ISAAC / Version 1.0c 
BEB  ISAACBs 

Flot file  = goaldefl.out 

S-range 
F-range = 
M-range = 
I-range - 
C-range =■ 

p-shot=* 8.858 
MAX TCI - 3 

P-WEIGHTS: 
AR - B 18 
AB = 48 48 
IR - 18 8 
IB - 48 48 
BG - 18 18 
BG =. 8 8 

2 
6 
8 
8 
8 

G_M - 35 25 

flLIUE   INJURED 
175/175      B 
CIBBK)   (    Bxl 

ABU - 2 
CLS - 6 
CBI » B 
R_M - B 
B_M - B 

Contoat Space a 180 x 186 

m ," " ■ _ M-range = 1 
-« «.": . " .»■ T-range = 3 

C-range = B 
•... 

m 
,Bi !■   " n-shot= 8.B5B 

."..■"- " 

MAX TGI - 3 

*   " ">" ".« P-MEIGHIS: 
AB - IB IB 
AR = 48 48 
IB - 18 18 
IR = 48 48 
BG -  8  8 
8C -    5B 58 

ADU - 1  1 
CLS = B  8 
CBI - 8  B 
B M - 8  8 
R_M - 8  8 

OLIVE INJURES 
175/175  8 
ClBBa) ( 8x> 

„J.P.- 

time = 25 time = 50 

. 4     _2:.M"-. 'v: 

Mrs   .-5"j^p':. 

BLUE ISBACAs: 
S-range = 3 
F-range = 2 

time = 65 

time = 75 time = 90 time = 105 

114 



irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

Sample Run #6: GOALDEF2.out 

Figure 41 shows a few snapshots taken from a play-back of the file 
GOALDEF2.out. 

This, and the previous, sample run illustrate how ISAAC can be used to 
explore simple "goal defense" scenarios. In this run, blue defends its 
own flag against a red attack. Note that blue has a very simple 
personality. In particular, since only the second (AR under P-WEIGHTS 
in figure 41) and fourth (IR under P-WEIGHTS in figure 32) 
components of blue's personality weight vector are non-zero, blue "sees" 
only enemy ISAACAs. Since, initially, all blue ISAACAs are only 
surrounded by other blue ISAACAs, until red forces come within range 
of the blue side, the blue ISAACAs effectively perform a "random walk" 
around their starting positions (since all possible moves incur exactly 
the same penalty). In contrast, the red force responds to both red and 
blue ISAACAs, though is "blind" to injured friendlies. Red and blue 
forces are endowed with equal sensor (rs = 5) andere ranges (rFred = 3), 
equal single-shot probabilities (p = 0.005) and can both simultaneously 
engage a maximum of 3 enemy targets. There are 150 ISAACAs per 
side. 

What is interesting about this sample run is the unexpected, sudden 
phase-transition-like change of behavior that occurs a relatively long time 
"into" the close-combat that ensues near the blue flag. Upon reaching 
the outer area of blue's defensive posture (see snapshots for times t = 50 
and t = 150), red at first fights blue in a tighüy clustered formation. Red 
continues fighting in this cluster-mode for a relatively long time (see 
snapshots 75 through 150) until, suddenly, most of red's forces rapidly 
disperse outward and stream toward the blue flag. 

The static snapshots shown in figure 41 do not do justice to the 
abruptness of this behavioral transition, which can be likened to 
turning on a "light" by a flicking a light switch. The abruptness of this 
transition is best appreciated by using ISAAC_PB to play back the file 
GOALDEF2.out. 
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Figure 41. Snapshot views of GOALDEF2 .out 
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Sample Run #7: CIRCLE.out 

Figure 42 shows a few snapshots taken from a play-back of the file 
CIRCLE.out 

As can be seen from the parameter values shown in the snapshot of this 
run for time = 1, the red force is very aggressive (with a combat threshold 
of negative 7 and a strong propensity for moving toward injured blue) 
while the blue force is fairly timid (with a combat threshold of positive 5 
and a propensity for moving toward injured friendlies). Red and blue 
forces are endowed with equal sensor (rs = 5) andere ranges (rFred = 3), 
equal single-shot probabilities (p = 0.005) and can both simultaneously 
engage a maximum of 3 enemy targets. There are 200 ISAACAs per 
side. 

This sample run is noteworthy for two reasons: (1) the unexpected 
self-organized internal formation of red forces as they advance toward 
the blue flag (see snapshot for time t = 25), and (2) the emergent, and 
seemingly "intelligendy orchestrated," encirclement of blue by red 
forces (see snapshots for times t = 85 through t = 140). Concerning the 
orderly fashion in which red ISAACAs march forward, keep in mind 
that this internal order arises despite the fact that ISAAC randomizes the 
order in which ISAACAs are sampled for making their moves on each 
iteration step. Note that this self-organized behavior is only partially 
revealed by the static snapshot in figure 42. In order to fully appreciate 
this point the user is urged to play back CIRCLE.out by using 
ISAAC_PB. 

An interesting question to ask is "How should blue alter its personality 
(i.e., its "tactics") - during the course of the battle - in order to prevent 
being encircled by red forces?" While ISAAC can be used to explore the 
behavioral consequences of matching alternative fixed blue 
personalities against the same red force, ISAAC does not yet have the 
flexibility to explore the consequences of a dynamically changing 
personality (i.e., wieta-personalities). Meta-personalities are planned to 
be incorporated into future versions of ISAAC. 
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Figure 42. Snapshot views of CIRCLE . out 
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Sample Run #8: FIRESTMl.out 

Figure 43 shows a few snapshots taken from a play-back of the file 
FIRESTMl.out. 

Figures 43 and 44 are meant to be viewed together. Figure 44, which 
contains snapshots from a play-back of FIRESTM2.out, shows how 
exactly the same two force personalities shown in figure 43 unfold, 
except that blue ISAACAs are allowed to communicate with other blue 
ISAACAs. 

As can be seen from the parameter values shown in the snapshot of this 
run for time = 1, the red and blue forces are virtually identical for this 
sample run: each is endowed with the same sensor (rs = 4) andere ranges 
(rF,red = 3). each has the same single-shot probabilities (p = 0.003) and can 
simultaneously engage the same maximum of 3 enemy targets, and each 
obeys the same combat constraint conditions. Their personalities differ 
in that while each blue ISAACA is defined by the same personality 
weight vector w = (10,40,10,40,0,50), each red ISAACA is defined by 
a different and random weight vector. There are 150 ISAACAs per side. 
Note that neither side uses communication. 

The only noteworthy feature of this sample run is the overall, slightly 
disorganized, pattern of behavior that is to be contrasted with the 
behavior in figure 44. After the "collision" between the two forces at 
time t~60, the unfolding combat consists mainly of small, tightly 
clustered "firestorms" near the center of the battlefield. Neither side 
appears well organized, as both red and blue ISAACAs can be seen 
migrating from firestorm to firestorm. Now, skip ahead to figure 44, 
which shows the effects of endowing one side with an ability to 
communicate  
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Figure 43. Snapshot views of FIRESTMI .out 
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Sample Run #9: FIRESTM2.out 

Figure 44 shows a few snapshots taken from a play-back of the file 
FIRESTM2.out. 

Figures 43 and 44 are meant to be viewed together. Figure 43, which 
contains snapshots from a play-back of KLKESTMl.out, shows how 
exactly the same two force personalities shown in figure 44 unfold, 
except that neither the red nor blue forces have communications. 

As can be seen from the parameter values shown in the snapshot of this 
run for time = 1, the red and blue forces are virtually identical for this 
sample run: each is endowed with the same sensor (rs = 4) and fire ranges 
(rFred = 3), each has the same single-shot probabilities (p = 0.003) and can 
simultaneously engage the same maximum of 3 enemy targets, and each 
obeys the same combat constraint conditions. Their personalities differ 
in that while each blue ISAACA is defined by the same personality 
weight vector w = (10,40,10,40,0,50), each red ISAACA is defined by 
a different and random weight vector. There are 150 ISAACAs per side. 

The major difference between the red and blue forces in this sample 
run is that the blue ISAACAs are able to communicate with one another. 
In particular, blue's communications range (or C-RANGE) is equal to 6, 
and blue's communications weight tucomm = 0.25. This means that each 
blue ISAACA uses not only the information that is aware of in its own 
filed-of-view (out to a sensor range rs = 4), but information 
communicated to it by all friendly ISAACAs within a range rcomm = 6. 
This additional information is assigned one-fourth the weight relative to 
information supplied by own-sensor. As in figure 43, the red side does 
not use communications. 

Comparing the behavior-as it unfolds in this sample run to that shown 
in figure 43, we see that the pattern this time is, overall, better 
organized. Instead of the small, tightly clustered "firestorms" that 
characterize the run in the absence of blue communications, here blue 
is able to maintain a strong organized central presence. No blue is 
allowed to stray too far from the area of the most intense combat, and 
few isolated "firestorms" appear, as they had in the earlier example. 

It is interesting to note that while red undeniably "follows" blue's lead 
throughout the encounter (a fact that is much better illustrated by 
playing back the file FIRESTM2.out with ISAAC_PB) - that is to say, 
that blue initiates an action to which red immediately responds - red 
also appears to be better organized than in the previous example. This, 
despite the fact that red does not use communications in either example. The 
rudimentary "lesson learned" is that when one side unilaterally 
enhances its internal organization, that action may - ironically - 
enhance the apparent organization of both sides. 
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Figure 44. Snapshot views of FIRESTM2 . out 
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Sample Run #10: SENSOR.out 

Figure 45 shows snapshots at times t = 20, 40 and 60, taken from 
play-backs of files SENSOR_l.out, SENSOR_2.out, SENSOR_3.out, and 
SENSOR_4.out. These play-backs appear together here to illustrate the 
effects of systematically increasing one side's (namely, red's) sensor range while 
keeping the other side's parameters fixed. 

The scenario for this sample run is as follows. The red force consists of 
N=100 ISAACAs, and is fairly aggressive, with a combat threshold of 
negative 4. The blue force consists of N=50 ISAACAs, and is less 
aggressive than red, with a combat threshold of zero. Both sides are 
endowed with the same fire range (rF = 4), the same single-shot probability 
(p = 0.005) and can simultaneously engage the same maximum of 3 
enemy targets. Note that the flags for this sample run are located near 
the middle of the left and right edges of the notional battlefield. 

The four rows in figure 45, from top to bottom (appearing below the 
initial state shown at the top of the figure), show snapshots of runs in 
which red's sensor range is systematically increased in increments of 
two: rs red = 3 for SENSOR_l.out; rs red = 5 for SENSOR_2.out; rs red = 7 
for SENSOR_3.out; and rs red = 9 for SENSOR_4.out. Note that blue's 
sensor range, rs blue, remains fixed at rs blue = 5 throughout. 

The snapshots for SENSOR_l.out show that when red's sensor range is 
less than blue's, red is effectively able to "barrel" its way through the blue 
defenses into blue's flag, as it is unconcerned about - or, more likely, 
simply unaware of, because of its relatively short sensor range - the 
surrounding blue forces. 

The snapshots for SENSOR_2.out show that when red's sensor range is 
set equal to blue's, red is no longer able to penetrate blue's defense as 
swiftly as in the previous run. Since red ISAACAs here have an longer 
sensor range, more of them are able to sense - and are therefore forced 
to respond to - the surrounding blue forces. 

The snapshots for SENSOR_3.out show that when red's sensor range is 
two units greater than blue's, red is not only able to mass almost all of its 
forces on the blue flag (a later snapshot would reveal blue's flag 
completely enveloped by red forces by time t=100), but to defend its 
own flag from all blue forces as well. In this instance, the red force 
knows enough about, and can respond quickly enough to enemy action such 
that it is able to march into enemy territory effectively unhindered by 
enemy forces and "scoop up" blue ISAACAs as they are encountered. 

What happens when red's sensor range is increased still further? One might 
intuitively guess that red can only do at least as well; certainly no worse. 
However, as the snapshots for SENSOR_4.oiit show, where red's sensor 
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range is increased to rs red = 9, red actually does worse than it did in any 
of the preceding runs. "Worse" here means that red is less effective in 
(a) establishing a presence near the blue flag, and (b) defending blue's 
advance toward the red flag. 

There is, perhaps, a fundamental lesson to be drawn from this simple 
example: given that the resources and personalities of both sides remain fixed in 
a conflict, how "well" side X does over side Y does not necessarily scale 
monotonically with X's sensor capability. As one side is forced to assimilate 
more and more information (with increasing sensor range), there will 
inevitably come a point where the available resources will be spread too 
thin and the overall fighting ability will therefore be curtailed. On the 
other hand, the deeper lesson here might be that as sensor range is 
increased - thereby increasing the amount of "information" that side X 
is forced to assimilate and respond to - X's resources and/or tactics (i.e., 
"personality") must also be altered in order to ensure at least the same level of 
"mission success." 
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Figure 45.   Snapshot views of SENSOR_X.out (X=1,2,3,4) 
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Sample Run #11: LOCALCMD.out 

This sample run illustrates a simple scenario in which the red force is 
endowed with one local commander (LC). The blue force is, as in all 
preceding examples, strictly decentralized. 

Figure 46 shows a fragment of the input data file used to generate this 
run. This fragment is used to define the parameters of the red local 
commanders. Figure 46 shows that there are three LCs 
(num_RED_comdrs = 3). Each LC has 20 subordinate ISAACAs under 
his command ((l)_R_undr_cmd = 20)19 and reacts only to enemy 
ISAACAs (w2:alive_B = w4:injrd_B = 35) and the enemy flag (w6:B_goal 
= 50). The LCs in this sample run are also fairly timid, both as 
individuals (with a combat threshold of positive 25) and as commanders 
(with negative command weights). Negative local command weights 
mean that the LCs tend to send their subordinate ISAACAs away from 
(rather than toward) areas in which the red forces are outnumbered by 
blue. Figure 47 shows a few snapshots taken from a play-back of the run 
stored in LOCALCMD.out. 

Figure 46. Fragment of LOCALCMD.dat input data file 

******************************* 
* RED  LOCAL COMMAND PARAMETERS ******************************* 

l'REDJifcörtäfi'dii.fVägJ 1   ^::    : 
num_RED_comdrs 3 
:R_patchitype 1 

: R_patch_flag 2 

: * local: commander parameters 

: Cl)_RiUrtdr_cmd      .20:'■■:■:; 
(l)i.R_ctnnd_rad        2 
(D-A-SENSOR^rng    7 

:* local: commander personal ity •.'..;: 

U)_wl:alive_R 0.000000 
(l)_w2:a1ive_B 35.000000 
(D_w3:i:njrdlR: 0.000000 
(l)_w4:injrdiB 35.000000 
U)_w5:R^goal 0,000000 
Cl)_w6:Bjoal 50.000000 

; *■;: 1 ocaIT: command er con str a i nts;; 

aOliÄDVi^ange;: -:wC 
(1}_ADVANCE nun      0 
(l)_CLUSTER_num      0 
(l)_C0MBAT_num        25 

* local  command weights 

<:l}2R-*-Slphfl -1-. 
{l)^R_w_betä: -1. 
(15-R_wjelta -1. 
Xl)_R_w_gamma -1. 

:.■* global command weights 

:(l;)^.w^obey_GC_def"l.:::; 

Figure 47 shows a few snapshots taken from a play-back of the file 
LOCALCMD.out (using ISAAC_CE). The images shown here can be 

19     The data file fragment in Figure 46 shows only the parameters values of the first 
local commander. The other two local commanders are identical. 
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reproduced interactively by pressing the "C" hot-key toggle-switch (see 
"Hot-Key"Menu) a few times to display the LC's command area (i.e., the 
box surrounding the black "dot" representing the LC) and the LC's 
subordinate ISAACAs (i.e., the maroon colored "dots" that are 
"tethered" to the LC). 

Figure 47 shows that as soon as the LC encounters enemy forces at the 
periphery of its command area (see snapshot at t = 30), it moves away 
from them (as well as the ensuing combat near the center of the 
notional battlefield), and directs its subordinates to follow. From that 
point on, the LC is able to stay clear of all enemy ISAACAs, and thereby 
steer its subordinate ISAACAs from harm's way. After most of the 
fighting near the center of the battlefield has ended, the LC finally 
"sees" a clear path toward the blue flag (see snapshot at t = 155). 
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Figure 47. Snapshot views of LOCAICMD . out 
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Sample Run #12: GLBALCMD.out 

Figure 48 shows a fragment of the input data file used to generate 
sample run #12. This fragment is used to define the parameters of the 
red global commander. Figure 49 shows a few snapshots taken from a 
play-back of the run stored in GLBALCMD.out. 

Figure 48. Fragment of GLBALCMD.dat input data file 

****************************** 
RED GLOBAL COMMAND PARAMETERS 

******^ . 
ED_g1oba1_f1ag    1 

direction parameters; 

:G fear index: 
C_w_a1pha l; 

:C_x_beta 1. 
C_frac_R[l] .3 
C_frac_R[2] .6 
C_w_swath[l] 1. 
C_w_swath[2] 1. 
:ei>/jisWathI33 1. 

C_he1p_radius      40 
C_h_thresh .1 
C_rel_h_thresh    1.5 

help parameters 

C max red f          2.5 

The initial state and almost all parameters defining the red and blue 
forces are the same as in the previous sample run (LOCALCMD.out). 
One important difference, however, is that whereas the red local 
commanders were all very timid in LOCALCMD.out - as exemplified by 
them all having negative command weights (see figure 46) - here the 
local commanders all have positive weights. This means that the local 
commanders in this sample run always send their subordinate ISAACAs 
toward (rather than away from, as in the previous sample run) the area in 
greatest need of red firepower. 

In contrast, the global commander is very timid. Figure 48 shows that 
the GC's GC_fear_index is set equal to one, meaning that the GC will 
vector his local commanders toward the blue flag if and only if he finds 
a "sector" pointing at the blue flag that is completely free of blue 
ISAACAs.20 

Figure 49 shows that the GC is able to keep his local commanders (and 
therefore their own subordinate ISAACAs) away from harm's way until 
the blue force moves close to the red flag. Note that the cluster of red 

20     "Sectors" and other parameters defining local and global command are discussed 
in Command and Control. 
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ISAACAs that collide with the blue force at time t = 25 are not under 
either local or global command. 

If GLBALCMD.out is played back interactively using ISAAC_CE, recall 
that the "C" hot-key acts as a toggle switch for displaying various 
command-related parameters on screen. Figure 49 shows both a 
command-box surrounding each local commander (representing the 
LC's field-of-view and area of responsibility) and a thin dark tether 
connecting the three LCs (reminding the user that each is under the 
command of a global commander). 
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Figure 49. Snapshot views of GLBALCMD . out 
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Sample Run #13: BATTLEl.out 

Figure 50 shows a few snapshots taken from a play-back of the file 
BATTLEl.out. 

This last run is an example of what a relatively large ISAACian "battle" 
looks like. In this battle, a large number of ISAACAs (400 per side) 
engage first in close combat, then in an increasing number of smaller 
local skirmishes that eventually spread to all parts of the notional 
battlefield. 

The red force is very aggressive, with a strong propensity for moving 
toward enemy forces and a combat threshold of negative 6 (see 
parameter values in the snapshot for time = 1). The blue force is less 
aggressive than red, with a slightly higher propensity for moving 
outward alive blue rather then alive red ISAACAs and a combat 
threshold of zero. Blue ISAACAs are also more prone to cluster than 
reds. Both sides are endowed with the same sensor range (rs = 6), fire 
range (rF = 3), the same single-shot probability (p = 0.001) and can 
simultaneously engage the same maximum of five enemy targets. 

Figure 50 shows that, after the collision between the two forces takes 
place some time before the snapshot at time = 60, the battle evolves in 
essentially two distinct phases. The first phase consists of tight, close 
combat that - except for a slight "fraying" at the edges - is entirely 
confined to the central region of the battlefield. The second phase, 
which begins some time before the snapshot at time = 115, consists of 
an increasing number of much smaller-scale skirmishes spreading 
outward from what used to be the area of close combat. While not 
immediately clear from figure 50, there is complicated pattern of 
maneuvers on both sides, as red and blue ISAACAs continually shift 
over from one skirmish to another as the battle unfolds. This run may 
be viewed by using ISAAC_CE to play back the file BATTLEl.out. 
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Figure 50. Snapshot views of BATTLE l. out 
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Data Collection 
So far, we have discussed only how ISAAC can be used to display (or 
play back) the time evolution of a given data input file. In this simple 
visual mode of operation - which can be thought of as a purely syntactic 
representation of the unfolding behavior, in that it displays the exact 
symbology of what is happening and no more - the user chooses a new 
data file, or selectively alters the contents of an existing one, and runs 
ISAAC to display the resulting dynamics. While such interactive runs are 
obviously very useful in identifying a variety of emergent behaviors (see 
Sample Runs), and can therefore be quite provocative - on a qualitative 
level - they do not by-themselves constitute any direct quantitative 
evidence of any sort of behavior. For this, other, more semantically 
oriented, measures are required; measures that provide not just a 
record of what is happening but an interpretation of why it is 
happening. 

To this end, ISAAC provides a capability to (1) generate time series of 
various changing quantities describing the step-by-step evolution of a 
battle, and (2) keep track of certain measures of "how well" mission 
objectives are met at a battle's conclusion. The former (using built-in 
statistics measures; see below) yields quantitative snapshots of a battle as 
it unfolds in time; the latter (using a simple parameter-space mapping 
technique; see below) yields semi-quantitative measures of "success" at a 
mission's end. 

Built-in Statistics 

ISAAC is equipped with a rudimentary data collection capability. 
Specifically, ISAAC'S Core Engine (i.e., the program ISAAC_CE; see table 
4 in Overview of ISAAC)21 has facilities to calculate seven basic classes of 
information (each as a function of time; see discussion below): 

• Class 1: Force sizes 

• Class 2: ISAACA interpoint distance distributions 

• Class 3: ISAACA neighbor-number distributions 

• Class 4: ISAACA:enemy-flag interpoint distance distributions 

• Class 5: ISAACA cluster-size distributions 

• Class 6: Center-of-mass positions 

. • Class 7: Spatial Entropy 

21     ISAAC'S single-squad version ISAAC_SQ has exactly the same data collection 
capabilities as the full multi-squad version. 
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Data collection is enabled by setting the stat_flag variable appearing in 
ISAAC'S input data file equal to 1 (see Statistics Parameters in Contents of 
ISAAC'S Data Input File). The calculation of each of the above classes of 
statistics is toggled by individual parameter "flags" appearing in the 
statistics parameters section of ISAAC'S input data file. 

The total output of ISAAC'S data collection routines (assuming all 
statistics flags are set equal to 1) is distributed among 21 consecutively 
numbered files STATS_l.dat through STATS_21.dat. Table 8 provides 
a brief description of their contents. A complete listing of the data fields 
appearing in each of these output files is given in Appendix E: 
STATSJLdat Data Fields below. 

In addition to these 21 output data files, the user also has the option of 
using the auxiliary parameter-space mapper program ISAAC_PM to 
effectively "map-out" the dynamical behavior over a two-dimensional 
slice of ISAAC'S total N-dimensional parameter space using certain 
(user-defined) measures of behavior (see Taking 2D "Slices" of ISAAC'S 

Parameter Space below). 

Table 8. Description of ISAAC'S data output files 

Class of data Appropriate 
"flag"1 

Associated Output 
files 

Force sizes 

ISAACA interpoint distance 
distributions 

ISAACA:enemy-flag interpoint 
distance distributions 

ISAACA neighbor-number 
distributions 

ISAACA cluster-size distributions 

Center-of-mass positions 

Spatial entropy 

stat_flag 

interpoint_flag 

interpoint_flag 

neighbors_flag 

cluster_l_flag 
& 

cluster_2_flag 

center_mass_flag 

entropy_flag 

STATS_l.dat 

STATS_2.dat- 
STATS_6.dat 

STATS_7.dat & 
STATS_8.dat 

STATS_14.dat - 
STATS_19.dat & 
STATS_21.dat 

STATS_10.dat- 
STATS_13.dat 

STATS_20.dat 

STATS_9.dat 
1      This refers to variables appearing in the statistics parameters section of ISAAC'S 
data input file (see Contents of ISAAC'S Data Input File) 

Classes of Data 

As mentioned above, there are seven classes of statistical information 
that ISAAC is able to keep track of during a run. The following sections 
contain brief descriptions of each class. 
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Class 1: Force sizes 

The first class of data consists of keeping track of basic red and blue 
ISAACA force strengths, measured as the remaining fractions of the 
original force size. Separate measures are provided for alive red, alive 
blue, injured red, injured blue and total red and total blue forces. 

For data field descriptions see STATS_l.dat in Appendix E: STATSJLdat 
Data Fields. 

Class 2: ISAACA interpoint distance distributions 

The second class of data consists of keeping track of the averages and 
distributions of the distances between pairs of ISAACAs. Separate 
measures are provided for red:red pairs, red:blue pairs, blue:blue pairs 
and distances between red ISAACAs and the blue flag and blue 
ISAACAs and the red flag. 

For data field descriptions see STATS_2.dat through STATS_6.dat in 
Appendix E: STATSJLdat Data Fields. 

Class 3: ISAACA neighbor-number distributions 

The third class of data consists of keeping track of the averages and 
distributions of the number of neighbors that red and blue ISAACAs 
have that are within a range R=l, 2,..., 5 of them. Separate measures are 
provided for red, blue and all (either red or blue) ISAACAs near red 
ISAACAs, red, blue and all (either red or blue) ISAACAs near blue 
ISAACAs, and red and blue ISAACAs near both red and blue flags. 

For data field descriptions see STATS_14.dat through STATS_19.dat and 
STATS_21.dat in Appendix E: STATSJLdat Data Fields. 

Class 4: ISAACA:enemy-flag interpoint distance distributions 

The fourth class of data consists of keeping track of the averages and 
distributions of the distances between red and blue ISAACAs and their 
enemy flags (i.e., between red ISAACAs and the blue flag and blue 
ISAACAs and the red flag). 

For data field descriptions see STATS_7.dat and STATS_8.dat in 
Appendix E: STATSJLdat Data Fields. 

Class 5: ISAACA cluster-size distributions 

The fifth class of data consists of keeping track of the averages and 
distributions of the sizes of clusters of ISAACAs, using inter-cluster 
distance criteria of D=l and D=2. (An inter-cluster distance criteria of 
D=d means that two ISAACAs that are within a distance d of each other 
are defined to belong to the same cluster.) Because this class of data 
provides an insight into the gross structural appearance of the entire 
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battlefield, it can be thought of as a crude pattern recognition measure. 
Another such measure is provided by spatial entropy (see below). 
Appendix F contains a heuristic description of the Hoshen-Kopelman 
algorithm used to calculate the cluster distribution. 

For data field descriptions see STATS_10.dat through STATS_13.dat in 
Appendix E: STATSJLdat Data Fields. 

Class 6: Center-of-mass positions 

The sixth class of data consists of keeping track of the (x,y) coordinates 
of the center-of-mass position of the red, blue and total (i.e., red + 
blue) force, as well as the distances between the red and blue forces and 
both flags. The center of mass of the red force at time t, for example, is 
defined by coordinates xred CM(t) and xhXw(M{X) given by 

NKi(t) 1       #r«|(0 

*red,CM« = ^   X   *red,/(0      ^     J'red.CMC) = Jf^j   Ij   JW') > 

where xred ;(t) and yTed t(t) are the x and y coordinates of the 1th red 
ISAACA at time t, respectively and Nred(t) is the total number of red 
ISAAGAs at time t. 

For data field descriptions see STATS_20.dat in Appendix E: 
STATSJLdat Data Fields. 

Class 7: Spatial entropy 

The seventh class of data consists of keeping track of the spatial entropy 
of the configuration of the red, blue and total (i.e., red + blue) force. 

Spatial entropy provides a measure of the degree of disorder of a 
battlefield state. For example, a large group of tightly clustered 
ISAACAs is relatively highly "organized" and therefore has low entropy. 
In contrast, a battlefield that consists of many and widely dispersed 
small groups of ISAACAs is relatively "disorganized" and thus has a high 
entropy. 

Spatial entropy E = E(b), where b is the size of the sub-block of the 
(B/b)-by-(B/b) array of sub-blocks into which the battlefield is 
partitioned, and B is the length of the battlefield (see figure 51). ISAAC 
performs separate calculations using b = 4, 8 and 16. E(b) is defined as 
follows: 

b2 

m = ' 21ofe ? Pi{b) l°Z2Pi(V » 
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where #(b) = N;(b) / N, log2x is the logarithm base-2 of x, N is the total 
number of ISAACAs (red + blue) on the battlefield, b2 is the number of 
sub-blocks into which the battlefield is partitioned, and the factor 
appearing before the summation sign, (21og2b)"\ is a normalization 
constant. Note that p{(b) effectively gives the probability of finding an 
ISAACA in the i"1 sub-block. 

Observe that if a single sub-block contains all the points, then the 
spatial entropy has its minimal possible value: E(b) = 0. On the other 
hand, if the ISAACAs are all scattered throughout the battlefield in such 
a way that p(b) = p = 1/b2 for all sub-blocks i, then the spatial entropy 
takes its maximal possible value: E(b) = 1. The closer the value of E(b) is 
to zero, the "closer" the ISAACA distribution is to one that is tightly 
clustered near a single sub-block. The closer the value of E(b) is to one, 
the "closer" the ISAACA distribution is to one that is completely 
scattered throughout the entire battlefield. 

Figure 51. Battlefield partitioned into an 8-by-8 array of sub-blocks of 
size B/8 

(B/8)-by-(B/8) 
block 

8 sub-blocks 

*. 

8 sub-blocks 

For data field descriptions see STATS_9.dat in Appendix E: STATSJLdat 
Data Fields. 
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Sample Output 

Consider the fairly complex ISAAC evolution depicted in figures 52 and 
53. The values of the parameters defining the single-squad red and blue 
forces are shown on the left and right of figure 52, respectively. There 
are 200 ISAACAs per side and both sides are relatively aggressive: red's 
combat threshold? being equal to -3 and blue's to -6. Note also that for 
this scenario, both fratricide and reconstitution options have been 
enabled, with a reconstitution time trecon = 15 steps. The fratricide 
option means that whenever an ISAACA X targets an enemy ISAACA Y 
and misses, a friendly ISAACA X' that is near Y can inadvertently be 
targeted and hit by X instead. The reconstitution option means that if 
an alive (red or blue) ISAACA X is hit (either by enemy or friend) at 
time t - so that X becomes injured - but is not hit during any time 
between t = x+1 and t = T+trecon, X's state is reconstituted back to alive at 

timet = t+t     +1. recon 

Figure 53 shows a few snapshots of how the initial state shown in figure 
52 unfolds in time. One can see that the behavior of these two 
"personalities" proceeds in essentially four stages. The first stage 
(referring roughly to times t = 1 through t = 20) consists of an initial 
internal jostling for position (on both sides) and a steady march toward 
the enemy corner. The second stage (between times t = 25 and t = 70) 
consists of "close combat" within a tight central cluster of closely packed 
red and blue ISAACAs. The third stage (between t = 80 and t = 120) is 
marked by a relatively rapid "expansion" of forces outward from the 
central region of the battlefield. The fourth, and final, stage (for times t 
> 140) consists mostly of small local skirmishes that are distributed 
throughout most of the battlefield. 

Figures 54-a through 54-b provide a sampling of the kind of 
information contained in the statistics output files STATS_l.dat 
through STATS_21.dat. Figure 54-a, for example, shows a plot of blue 
force strength (expressed as a fraction of the original number of 
ISAACAs) as a function of time, plotted for t=l through t=250 (note 
that the "snapshots" in figure 53 stop at t=150). Initially, and until the 
red and blue forces "collide" at time t~18, the blue ISAACAs are at their 
strongest. The bottom-most curve in figure 54-a, which shows the 
fraction of injured blues, begins to rise as soon as blue ISAACAs are 
targeted and hit by opposing reds. Notice that, because the 
reconstitution option has been enabled for this run (see above), the 
number of alive blues frequently increases during the course of the 
evolution. 

Figure 54-b shows a plot of the average distance between red and blue 
ISAACAs as a function of time. The curve starts out at a distance d~57 
that is equivalent to the initial separation distance between the starting 

See ISAACA Combat in Overview of ISAAC for a discussion of combat threshold. 
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"boxes" of the red and blue forces. As the two forces move toward their 
enemy's flag and thus approach one another, the average inter-force 
distance steadily diminishes, reaching a minimum as the two forces 
"collide" near the center of the batdefield. The relatively flat portion of 
the curve that appears between times t~25 and t~80 corresponds to the 
period of intense "close combat" discussed earlier and shown in early 
snapshots in figure 53. The curve in figure 54-b then begins a steep 
climb from values near ~15 (at t < 80) to values near ~35 (for t > 130), 
corresponding to the third stage of the evolution during which there is 
a relatively rapid "expansion" of forces outward from the central region 
of the batdefield. This third stage is next followed by a second plateau 
region (in which the average distance between red and blue ISAACAs is 
again relatively constant from t~130 to t~200). 

Figure 54-c shows a plot of the average number of red ISAACAs that are 
within a distance D=l (lower curve), D=3 (middle curve) or D=5 (upper 
curve) of blue ISAACAs. The largest relative numbers, of course, are 
found between the times t~25 and t~80 during which the scenario 
includes some very close combat near the central region of the 
batdefield. Compare the appearance of the plots in figure 54-b and 
figure 54-c during the later times t~150 through t~180, which is the 
interval of time shordy following the stage in which there is a rapid 
"expansion" of forces outward from the central region of the batdefield. 
We see that blue ISAACAs find themselves surrounded on average by a 
relatively greater number of enemy ISAACAs then before as the red 
forces effectively "organize" themselves for further combat after the 
"expansion." Notice that there is a second local rise in the average 
number of reds within blue corresponding to a small second "plateau" 
in figure 54-b between times t~215 and t~230. 

Figure 54-d shows the trajectory of the blue forces' center-of-mass 
(COM) position. The path of the COM begins at (x,y) ~ (62,62), 
corresponding roughly to the center of the "box" containing the initial 
distribution of blue forces (see figure 52). Notice how this trajectory 
moves almost straight toward the red flag (which is located near the 
origin) but then stops and - due to the dynamics between red and blue 
forces - effectively doubles back toward the blue flag, never managing to 
get closer to the red flag than the coordinates (x,y) ~ (32,32). 

Figure 54-e shows a plot of the spatial entropy as a function of time. 
Spatial entropy is here computed by partitioning the 80-by-80 batdefield 
into an 8-by-8 array of 10-by-10 sub-blocks, meaning that the 
"resolution" of this measure is effectively limited to 10-by-10 boxes, (see 
discussion in Spatial Entropy above). Recall that spatial entropy can be 
used as a crude pattern recognition tool: tight, relatively undispersed 
patterns having a low entropy; disorganized, scattered patterns having a 
high entropy. The measure is by no means perfect, but it can serve as 
useful descriptive tool to summarize and/or compare a large sampling 
of runs. In this case, we see that the relatively tighdy clustered initial 
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distribution (red in one "box" and blue in another) yields an initial 
spatial entropy E ~ .46. It rises a bit for the first few iteration steps (in 
the absence of combat) due to the internal 'jostling" of red and blue 
forces that widens the initial spread of forces. The entropy attains its 
minimal value E ~ .38 around t ~ 30 at the point at which the colliding 
red and blue forces have created the tightest cluster of combatants. The 
entropy then increases, reaching a maximum of E ~ .72 near t ~ 150 
(the middle of the "plateau" region in figure 54-b) as the forces disperse 
throughout the battlefield. The entropy then falls back down to smaller 
values as the numbers of combating ISAACAs decreases and local 
skirmishes become better organized. 

Figure 54-f provides an alternative pattern-recognition-like glimpse of 
the way in which the battle unfolds in time by plotting the average size 
of ISAACA clusters (with no distinction made between red and blue) as 
a function of time. Two ISAACAs that are within a distance d=l apart of 
each other are said to belong to the same cluster. Since the initial 
condition consists of two far-separated random distributions of 200 
ISAACAs per side, at time t = 0 the average cluster size is equal to 200. It 
drops as the opposing forces move toward their respective goals (and 
ISAACAs become temporarily separated as a result of internal 'jostling" 
for position), and falls to a local minimum at t ~ 12, which is around the 
time the two forces first collide. The average cluster size begins to 
increase once again as the opposing forces "bunch up" near the center. 
It attains its largest local values between times t ~ 20 and t ~ 35, which 
correspond roughly to the period marking the most "intense fighting" 
of the scenario (as characterized, for example, by the steepest rise in 
the number of injured blues shown in the bottom-most curve in figure 
54-a). As the forces are reduced by attrition and begin dispersing 
throughout the battlefield, the average cluster size steadily decreases. 
Notice, however, that the average cluster size begins decreasing at a 
significantly earlier time (t ~ 35) than the time at which forces begin 
"expanding" outward (at t ~ 80; see figure 54-b). 

142 



irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificialrLifeApproach to Land Warfare 

CD 
83 
CM 

fa 
3 
N-3 
pa 

co co IH to co co in »-I uimisHips 
>t r- T-i T-i in CM t-i 

ro m co co co 
83 i 

n   ii  ii  ii   n S3   II 
iH M S3 CD W S3 S3 W Nintost1 

01   0)   CO  0)   0) H   t- x m v in m    »H i 
S3 8) S) 81 SI ■P u u 
P   £   S   S   £ 0 M    II i-4 II  II  ii   II  II 
Ig   IQ   IQ   IQ   ID A tu II  II   II  II   n  II 
u t« t- s- s* (0 X fa 3 3VIHIS 
1   1   1   1   1 i a w 1HKSKUU Q »j so   i 

W fa 3 M U 0<Z Q OiSCEMHCaK SUUISK 

d">          ^s 

N        N 
83 S S3 S 

w        w 
S3       S3 
CO ^» S3 ^ 
CM   N CM   N 
\ S3 \ S3 

CD CO 83 83 
83 TH 8) *H 
CM w CM — 

IS 
CO 

X 

a 
CO 

II 

a 
Ü 
<6 

^p    V) 
44 —J *» 
3 
o 00 1 

•    E 
CM n 
LU 
_J 

t c 5 
00 o 
1_ 
o en *. i_ 
c 
o m 
2 >„ 3 3 
TO 

o 
Ü Ol 
CO     <C 

I < 
1 W 
c 
CO 

o 
(0 

■o c 
CO 
CO 

_CD 
CO 
E 
CO 
l_ 
CO 
D. 

c\i 
in 
2> 
3 
TO 
L_ 

co 
CO 
CM 

Q 
fa 
0C 

■■■■■■■■I ■■■■■■ 
■■   ■■■■■■ !■■■■■ 
■ ■■■■■■■■; min 
■■■■■■■■■ II ■■■ 
■   ■■■■■■ !■■■■« 

■   ■   ■■■■■ !>■■■■ ■■■■■■■■■ 
■■■■■■■■■ 
■■■   ■*■■■ !■■■■■ 
■ ■■■■I     li min ■■■■■■■■I ■ ■■■ ■  ■■■■■■■ !■■■    ■ ■■■■■■■■ !■■■#■ 
■■  ■■     II !■■■■■ 
■III   ■■■■! 

■■■■■■I ■■■■■ 
■■ ■■■■■■■■■■■■ 

III ■■ ■■■■ III 

01 e 

m P 
to en IH m co eo m IH m 01 CD CO S3 S3 CM CO V CD CO H 

83 CM 03      co      m 1 K 

II  n   n  II   II S3   II 
iH 

CO 
3 
►3 

lH HI m in co IH co co rH tO V 83 S3 Z 
03   03   0)   03   0) II (1 x IH r- IH en     m 1 W 
83 03 83 O) 83 +j u U               1 
S  S   S  S   S O Hi   II N* II    II    II    II    II H 
IQ    IQ    iQ    iff    Ifg -c fa     II       II       II       II       II       II 
hhhhh 03 X fa 3 Ot/IHEE, 
i   i   i   i   i 1   <C fa 1   OS 03 05 pa U CJ a J SQ    II 

t/3 fa X M U sux a fa cc « i-i i-i OS m CUUKPQ 

l">       («1 

83 83 S 83 

W          W 
83       83 
co ^ S3 ^ 
CM   N CM  N 
\ CD \ 83 
83 83 S3 S3 
CD ^ CD ^ 
CM w CM w 

4) 
U 
* 
H 
II 
A 
H 
V 

& 
u 

■p 
(/> 
II 
A 
W 
V 

c 
s 
K 

I 
V 
K 
II 
A 
X 
V 

o 
II 
A 
9 
V 

09 
H 

O 

A 
PH 
V 

■P 
« 
IS 

ll 
A 

V 

t) 
H 

« 
« 
A 
II 
A 
A 
V 

u 
s 
SH 
-P 
W 

I 
TS 
C 
« 
E 
E 
O 
O 
II 
A 
ej 
v 

143 



irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

Figure 53. Snapshot views of BATTLE2 . out 
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Figure 54. Sample statistics measures for BATTLE2.out 

Injured Blue 

(a) Force Strengths 

(c) Number of Red ISAACAs near Blue 

(e) Spatial Entropy 

(b) Red:Blue Interpoint Distance 

40 45 50 SS 
Blue Cwtsr-or-Mass x-Coordtnale 

(d) Blue Center-of-Mass Trajectory 

(f) Average Cluster Size 
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Taking 2D "Slices" of ISAAC'S Parameter Space 

The previous section discussed ISAAC'S built-in data collection 
capability, which consists essentially of keeping track of various 
quantitative measures of behavior as a function of time. These measures 
include force strength, neighbor counts, ISAACA:ISAACA distance 
distributions, and center-of-mass position, and includes a few 
rudimentary pattern-recognition tools such as cluster-size distributions 
and estimates of spatial entropy. While this data arguably goes a long 
way to providing important additional insights into "what is happening" 
on the notional battlefield - beyond the purely qualitative picture that 
emerges from ISAAGAs main graphics display alone - these data are 
nonetheless constrained by the same fundamental shortcoming as 
ISAAC'S main graphics display. Namely, both provide glimpses of only a 
single scenario: a single set of parameters defining the red and blue 
forces, and a single spatial disposition of those forces. In order to gain 
insight into what ISAAC'S generic behavior is like - i.e., in order to be 
able to answer questions such as "What behavioral features are independent 
of initial force disposition'?" or "How does the overall behavior change as I 
alter, say, blue's sensor range?" - we must be able to (at least) (1) average 
over a set of initial conditions, and (b) compare objectively the 
behaviors resulting from differing sets of parameters. 

Figure 55. Schematic of taking a two dimensional (x^ x2) "slice" 
through ISAAC'S N-dimensional parameter space 

2D "Slice 

To this end, a stand-alone parameter-space mapping program (ISAACJPM; 
see table 4) provides a capability to effectively map out the behavior 
over a two-dimensional "slices" through ISAAC'S N-dimensional 
parameter space (where N is a large number). Assume, for sake of 
argument, that each of the parameters that appears in ISAAC'S input 
data file under the heading "ISAACA Parameters" represents a single 
independent   "degree-of-freedom"   (or   axis)   in   the   total   ISAACA 
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parameter-space. Even if we were to do away with all parameters having 
to do with communications, all command and control functions, 
notional defense, fratricide and reconstitution, that still leaves us with a 
roughly 28-dimensional parameter space: 12 parameters for defining 
the individual components of the personality weight vector (6 alive + 6 
injured) + 5 parameters for defining various ranges + 6 parameters for 
defining the 6 threshold conditions (3 alive + 3 injured) + 2 parameters 
for defining an ISAACA's single-shot probability and the maximum 
number of enemy targets that it can simultaneously target. Even 
granting that our assumption that each of these parameters can be 
treated as an independent parameter is obviously false (many 
parameters are interrelated and not all parameters are equally 
"important" in defining an ISAACA's overall behavior), an ISAACA's 
genome clearly "lives" in a very large dimensional space. 

Now, from a conceptual stand-point, a complete "understanding" of 
ISAAC'S overall dynamical behavior can be obtained via a complete, 
exhaustive sampling of all possible behaviors resulting from all possible 
combinations of all possible parameter values. From a practical 
stand-point, of course, such an ambitious research program is obviously 
much too computationally costly to represent a viable approach. 
Instead, we provide two tools for exploring the ISAACian 
parameter-space: 

1. Genetic Algorithm Evolutions. The first tool consists of using a 
genetic algorithm to search through the available parameter 
space to find a set of parameters that lead to certain desired 
behaviors. This tool described in a later section (see Genetic 
Algorithm Evolutions oflSAACA Personalities below). 

2. Taking 2D "Slices" of Parameter Space. The second tool, 
described immediately below, is essentially a parameter-space 
mapper that takes two-dimensional slices through the ostensibly 
N-dimensional parameter space, and provides measures of how 
well certain mission objectives are met (by one side) for a given 
combination of parameters. See figure 55. 

As will become clear below, these two tools actually share some 
important features and use identical measures of "mission success" to 
either navigate through ISAAC'S parameter space (in the case of genetic 
algorithms) or provide a quantitative assessment of what a particular 
(x,y) "point" in ISAAC'S parameter space represents (in the case of 
parameter-space mapping). 
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The Basic Idea 

The basic idea behind using the program ISAAC_PM to take 2D slices 
of ISAAC'S parameter space is summarized as follows. First, by design, 
the blue force is fixed throughout a given run. That is to say, once the 
blue personality and combat parameters have all been defined - except 
for initial force disposition, which is always randomized at the 
beginning of a sample run - the blue side is "clamped," as it were, and 
remains unaltered throughout a run. The actual "slice" is taken through 
the red forces' parameter space. 

To this end, the user defines red's personality and combat parameters 
in the usual way, except that two special parameters (of the user's 
choosing) - x and y - are identified to be the (x,y) coordinates over 
which the system's behavior will be sampled. To each (x,y) combination 
of variable parameters (all other red parameters remaining constant), 
the program associates a quantitative measure of "how well" the red 
ISAACAs have performed a user-defined mission, and averages this 
measure over a desired number of initial conditions (for both red and 
blue initial force disposition). A measure of "how well" the red force 
performs a given mission is provided by a well-defined mission fitness. 

Because missions and mission-fitness are defined in the next section 
discussing genetic algorithms (see Mission Objective in Genetic Algorithm 
Evolutions oflSAACA Personalities), we will only briefly introduce the two 
concepts here. 

Mission 

Missions - labeled m -are objective, quantifiable goals that the red force 
must attain within a certain time frame, and consist of one or more 
mission primitives. Mission primitives might include such objectives as 
"get to blue flag as quickly as possible," "minimize red casualties," or "maximize 
the ratio of blue to red casualties," among others. 

Mission Fitness 

Mission fitness, f=f(m), is a numerical measure of how well the red force 
has performed its mission. It is defined so that / takes on real values 
between zero and one. f(m) = 0 meaning that the red force has been 
entirely unsuccessfulin fulfilling mission m;f(m)= 1 meaning that the red 
force has been entirely successful in fulfilling mission m. How close the 
value of / is to zero or one indicates how poorly or how well, 
respectively, the red force has performed a given mission. 
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Figure 56. Schematic of how ISAAC_PM works 

Mission m 
+ 

Red 
Personality 

P = (Pl x,y pN) 

ISAAC PM 

"►       ™aJe-„      "► Mapper" 

Mission Fitness 
fxy(m) 

The output of the parameter-mapper program is thus a set of mission 
fitness values, f^im), for each pair of sampled value of the (x,y) 
parameters defining the 2D "slice." Figure 56 shows a schematic. 

Pseudo-code 

ISAACJPM couples a slighdy older version of ISAAC'S Core Engine with a 
basic data-collecting front-end that automatically loops through selected 
x and y red ISAACA parameters and averages the mission fitness over a 
user-specified number of red and blue initial conditions. In 
pseudo-code, the main components of this recipe appear as follows: 

read PHASE.dat and PJSAAC files 
for x=xmin to xmax 

for y=ymin to ymax 
for initial_condition=1,icmax 

initialize for new run 
run ISAAC'S Core Engine 
calculate_fitness(initial_condition) 

next initial_condition 
append new fitness to output file 

next y 
nextx 
close output data file 

Concise User's Guide to ISAAC PM 

The stand-alone parameter-space mapper program ISAAC_PM uses a 
slightly older version of ISAAC'S core engine than the one that is 
described in detail in the section Overview of ISAAC. Specifically, the 
version of ISAAC that is embedded within ISAAC_PM allows only one 
squad per side and excludes all command and control structures. This 
minor deficiency will be remedied in future versions. 

Starting ISAAC_PM 

Assuming that the ISAAC "package" has been installed according to the 
instructions given in the section Installing ISAAC, the parameter-space 
mapper can be run by going to the appropriate subdirectory on the 
hard drive   (say, C:\ISAAC>)  and typing the command ISAAC_PM 
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followed by <ENTER> on the DOS command line. You will see the 
opening screen (figure 57), specifying the current version and build 
date of the program and a prompt to press <ENTER> to continue. 

The next screen prompts for three files (see figure 58): (1) 
P_ISAAC.dat, which is the default name of the file that contains a 
truncated version of ISAAC'S input data file (see Contents of ISAAC'S 
Input File in Concise User's Guide to ISAAC); (2) PHASE.dat, which is the 
default name of the file that contains ISAAC_PM-specific data entries 
needed to start the run (its contents are described below); and (3) 
PHASEOUT.dat, which is the file the user wishes to contain the output 
data generated by the impending run (see Contents ofISAAC_PM's Data 
Output File below). 

Figure 57. ISAAC_PM's opening screen 

ISAAC 
Irreducible Semi-Autonomous 

Adaptive Combat 
(Combat 'Parameter-Space' Mapper) 

Version 1.1.2 
22 April 1997 

Andy llachinski 
Center for Naval Analyses 

4401 Ford Avenue 
Alexandria, VA 22302 

ilachina@cna.org 

Press <ENTER> to continue 

After naming the input and output files, the user is next prompted to 
select the x-coordinate of the two-dimensional "slice" that will be taken 
through ISAAC'S parameter space (see figure 59). The user is asked to 
choose from a menu of twenty possible parameters. 
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Figure 58. ISAAC_PM's file name prompt screen 

SPECIFY INPUT FILES 

ISAAC input (P_ISAAC.dat): 

PHASE Input (PHASE.dat): 

SPECIFY OUTPUT FILE 

PHASE output (PHASEOUT.dat): P. 

Figure 59. ISAAC_PM's prompt screen for specifying the x-coodinate 

SPECIFY x-PARAMETER 

<1>   Number of Red Forces 
<2>  Weight w1 (Alive Red) 
<3>  Weight w2 (Alive Blue) 
<4>   Weight w3 (Injured Red) 
<5>  Weight w4 (Injured Blue) 
<6>  Weight w5 (Red Flag) 
<7>   Weight w6 (Blue Flag) 
<8>   Sensor Range 
<9>   Fire Range 
<10> Communications Range 
<11> Communications Weight 
<12> Threshold Range 
<13> Advance Threshold 
<14> Cluster Threshold 
<15> Combat Threshold 
<16> Min Distance from RED 
<17> Min Distance from BLUE 
<18> Min Distance from RED Goal 
<19> Probability of Shot 
<20> Max Number of Engagements 

Selection (Quit = 0) ? 
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For example, suppose that the desired x-coordinate is "Number of Red 
Forces" (choice <1> in figure 59 ). After entering a "1" (followed by 
<ENTER>), the user is then prompted to specify the minimum value of 
this x-coordinate, the maximum value of the x-coordinate, and the total 
number of desired samples that will range from the minimal to maximal 
selected values during the course of the run (see figure 60). The same 
sequence of prompts is then repeated for the y-coordinate. Upon 
completing the y-coordinate related series of prompts, the program 
displays its main graphics screen and begins the run (see Sample 
ISAAC_PM Runs below). 

Note that ISAAC_PM effectively reduces the dimensionality of ISAAC'S 
total parameter space by setting equal the alive (wia]ive) and injured 
(wi,injured) versions of the same component of the personality weight 
vector, and doing the same for the advance, cluster, combat and 
min-distance thresholds (see ISAACA Adaptability in Overview of ISAAC). 

Figure 60. ISAAC_PM's range/sample prompt screen 

x-coordinate: Red iSAACAs 

Minimum Value = ? 

Maximum Value = ? 

# of Samples = ? 

Contents of ISAAC_PM's Data Input File: PHASE.dat 

PHASE.dat contains a user-modifiable listing of variables that are used 
to control the execution of the parameter-space mapper front-end to 
ISAAC. It consists of three separate groups (see figure 61): 

• PHASE Parameters, which consists of parameters specifying the 
number of red and blue initial spatial configurations to average 
over (num_init_conds), the maximum number of iterations 
allowed for any one run of a sample (max_time_to_goal), and a 
parameter that defines how rapidly the mission fitness function / 
falls off from its maximal to minimal values (penalty_power). For 
a detailed discussion of each of these entries, see Contents of 
ISAAC_GA 's Data Input File: GA_ISAAC.dat). 

• Penalty Weights, which includes parameters that assign relative 
weight values to each of ten possible mission "primitives." These 
weights collectively define the red ISAACAs' "mission" m and 
therefore, implicitly, the mission fitness f(m) that ISAACJPM will 
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"attach" to the 2D-slice coordinates (x,y). For details see the 
sections Mission Objective and Contents of ISAACjGA's Data Input 
File: GA_ISAAC.dat in Genetic Algorithm Evolutions of ISAACA 
Personalities. 

• Termination parameters, which includes parameters specifying 
the exact conditions under which a given run will terminate. 
The four entries appearing in this group are defined in Contents 
ofISAAC_GA 's Data Input File: GA_ISAAC.dat below). 

Note that the parameters appearing in PHASE.dat (figure 62) are a 
subset of those appearing in the input data file used by the genetic 
algorithm front-end to ISAAC (ISAAC.GA, shown in figure 71). If the 
reader wishes to run the parameter-mapper program and/or alter any 
of PHASE.dat's parameter values, he is urged to first read the section 
discussing the genetic algorithm front-end (Genetic Algorithm Evolutions 
of ISAACA Personalities). 

Figure 61. Sample PHASE.dat input data file 

fi:***************************** ******** ■:■; 

f.* ;'; ■>• .A    "■;1 PHÄ5E;-;:parantete'rss: ; 1 
************************************* : 

In\M3"nyttalkednds;:: ; :;: :s. 150v : 
:maxItrmeLto_gOa1 1H 125   ::: 
: pe n a Tty^powe rl ... ,Z 
************************************* 

: * . - ;;-:;::;.;:x.;-:pena:l%j:vie:i:ghts (1-100)■[ :: i 
*****************:***+**************** 

Iw 1 ;it i me^to_g pal'; '..  0 ■' 
I w2^f;r tend 1 y_l o s s■ ] 1;:;: ■ •'.::;:;: 1:0 
SwB^enemyyioss ;-i ■■■-;:y.}i-W\. 
: iw4Jre/dJtö_ib1 üe^surv i v al_r:a ti 0; .<;0; ?; 
s w5.|f:r:r e n$\yMW.Zo_fi n etiiy^f 1 ägY;1;1;;:1Iflj: 
! ■tt6^enemy_COß_.:f;r i,end 1 y_f Ia;g 1: 1 ; 0 ■:* 
i;w7_frifp 1 .jrjvei ar_e«en)y7Y_f1 ag■ ;:;1;; 0.": ■;. 
1w8^nemy1_rtearjf:rlenäTyl^ag;;:^M$:W'?:-: 

: W9ir|0ratr§ct'tfejh'tts x>| ;:: 1101 ;1 
: «lOliblüe^fratricidOitsI::    illlO: 
:  ************************************* 

■■:::*.***************************-***+*****V-V:--: 

: ternii:na:tion_code?:-  ; ji 

containment number 
:... red _£M_t o_B F_f r a c 

10 : 

.5; ::■-:■. 

Contents of ISAAC_PM's Data Output File: PHASEOUT.dat 

Let x and y be the representative parameters defining the 2D "slice" of 
ISAAC'S parameter space. The parameter x, for example, might be 
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"Number of Red ISAACAs " and y might be "Probability of Shot;" x and y can, 
of course, be set equal to any of the twenty parameters listed on 
ISAAC_PM's prompt screens for specifying the x and y -coordinates; see 
figure 59. 

Suppose that the user has decided to take Nx samp samples of x between 
the values *min = xi and xmax = xNvmp (so that x1+1 = x, + A, where A = (xmax 

- *min) / N*,samp)> and to teke N,, samp samples of y between the values ymin = 
y, and ym3X = xjy^, so that yM = yx + A, where A = (ym3x - ymin) / N^ mp. 

ISAAC_PM's output data file consists of the following three (unlabeled) 
columns, in the following format: 

fx1,y1 (m) 

N; fx1'VNv<m) 
Viy        fx2,yi y(m) 

x2 VNy 
f X2'VN^,n> I 

XNX        V1 fXN,yi<m> 

XNX        VNy fxN'yN<m) 

Sample Graphics Display 

Once the user has selected the name of both input files and the 
parameter-mapper's output data file (see figure 58), ISAAC_PM runs 
through its initialization routine and displays the main graphics page. 

A sample graphics page is shown in figure 62. Note that this figure 
assumes that the hot-keys 'B' (for Battle-Space), and 'F (for Fitness) 
have both been pressed (see "Hot-Key" Menu below). The display is 
broken up into six separate regions: 

• A banner-display region, located at the top of the display and 
containing a large bold font, which identifies the program and 
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release version, and a reminder of which two parameters have 
been selected as the x and y axes of the 2D "slice" for this run. 

• A text-based progress-report region, located directly beneath the 
banner-display region, which provides an update of the progress 
made thus far during the run: Sample refers to the current sample 
number S being processed (expressed as a fraction of the total 
number of samples StotaI = Nx * Ny: S/StotaI), Iteration refers to the 
current initial condition C (expressed as a fraction of the total 
number of initial conditions that the program will average the 
fitness value over, C/Ctota!), Time refers to the current time step t 
of the sample that is being run for the C* initial condition for the 
5th sample (expressed as a fraction of the maximal allotted time 
for this run, t/ttotal), and the »-value and Rvalue give the current 
values of the x and y parameters selected for this run, 
respectively. 

• A battlefield region, located near the bottom right of the display, 
which contains the battlefield view of state of the current sample. 

• A fitness-parameters region, appearing to the bottom left of the 
battlefield, which contains a reminder of what mission fitness 
measure is being used for this run (see Mission Objective in 
Genetic Algorithm Evolutions oflSAACA Personalities). 

• A "hot-key" menu region, appearing at the bottom of the display, 
which contains a short menu of "hot keys" that the user can use 
to interrupt a run at any time to perform a variety of functions: 
"B" (for Battle-Space) toggles the graphics display of the 
notional battlefield,23 "F" (for Fitness) toggles the display of the 
mission objectives defining fitness for this run, along with a 
reminder of how each sample during this run is to be 
terminated, and "Q" (for Quit) closes all output data files 
(saving intermediate results) and quits the program. 

23 Note that such a display is time-wise somewhat costly (slowing down apparent 
computation speed about 40%). Because speed is of the essence in genetic algorithm 
evolutions (see below), this option should be used sparingly to obtain glimpses of how 
a particular sample is doing. 
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Sample Output 

Sample #1: Forward Advance 

One of the first emergent-like characteristics one notices about 
evolutions in ISAAC is that a cluster of mutually attracting ISAACAs - for 
example, a cluster composed of alive red ISAACAs, all of whom have a 
positive weight for moving toward alive red ISAACAs - typically does not 
move as quickly (toward the enemy goal, say) as the individual ISAACAs 
that make up that cluster would move toward the goal by themselves. In 
other words, a cluster attains an effective cluster-vefocity vdusK1. that is in 
general not equal to the velocity vISAACA that the individual ISAACAs 
making up that cluster would have if they were not part of the cluster. 

To see this using ISAAC_PM, consider a scenario that unfolds on a 
50-by-50 notional battlefield (i.e., set battle_size = 50 in P_ISAAC.dat; 
see above) in which there are no blue ISAACAs at all (i.e., set num_bhies 
= 0 in P_ISAAC.dat), red starts out confined to a 10-by-10 "box" near 
the lower-left corner of the battlefield, and red's mission is simply to "get 
to the blue flag as quickly as possible" (i.e., set wl_time_to_goal = 1 and 
all other weights w2 - wlO to zero in PHASE.dat). In order to focus the 
scenario entirely on examining the effects of the cluster threshold, set 
the advance threshold (i.e., ADVANCE_num in P_ISAAC.dat) to zero, so 
that all red ISAACAs are able to move toward the blue flag even when 
they are locally "alone." Also, let the run terminate either when the first 
red ISAACA reaches the blue flag or when a maximum time t = 125 has 
been reached (i.e., set termination_code = 1 in PHASE.dat). See figure 
63. 

Figure 63. Schematic of initial state for sample run #1 

blue flag 

10-by-10 
red start box 

Since the red ISAACAs start in a "box" whose center is about 55 lattice 
sites away from the blue flag (positioned at coordinates (x,y) = (49,49)), 
the minimal number of iteration steps that it must take red to reach the 
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flag is also about 55 steps. The time may be somewhat smaller or larger 
than this value, depending on exactly where in the box the red ISAACA 
that reaches the blue flag first actually started its run from the start box. 
The mission fitness / for this scenario is equal to one if the red force 
reaches the blue flag as quickly as possible (that is, in a time that it 
would take red if red's red:red weights wl and w3 were equal to zero). 
The fitness /= 0 if no red ISAACA reaches the blue flag before t = 125. 

This first output sample, shown in figure 64, consists of showing the 
result of running ISAAC_PM using the number of red ISAACAs as the 
«-coordinate of the 2D "slice" (with the value of x ranging from 1 to 50) 
and the "cluster constraint threshold' as the ^coordinate (with the value of 
y ranging from 0 to 50). Figure 64-a shows a three-dimensional plot of 
the fitness f(x,y) as a function of (x,y). Figure 64-b shows a contour plot 
of the same function, in which lighter shades of gray represent high 
fitness (near/~ 1) and darker shades represent low fitness (near/~ 0). 

Figure 64. Output of ISAAC_PM for sample run #1 

(0 
o 

C3 
Q 
0) 
E 

to 
a) 

< 

CO 

■a 
a) 

OS 

1 3 
z 

**»; 

CLUSTER Constraint Threshold 

(a) (b) 

Notice that when the value of the cluster constraint, C, is very small (less 
than 5), the red force requires only the minimal time to get to the blue 
flag (i.e., /- 1), regardless of the number of red ISAACAs. This is 
because the ISAACAs effectively must spend little or no "time" on any 
"internal jostling" for position, and are able to focus entirely on moving 
toward the blue flag. However, higher values of C generally force the 
red ISAACAs to spend more time on this internal jostling. The result is 
that for scenarios in which there are more than five reds present, there 
is a critical dynamical threshold of the cluster threshold - call it Cc - 
such that for values of the constraint threshold C < Cc, f~ 1 and for C > 
Cc, /is less than 1 and decreases with increases C. In other words, above 
a certain value of the constraint threshold, and depending on the 
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number of red ISAACAs, the red force becomes increasingly less adept 
at making it to the blue flag with increasing C. 

Sample #2: Red Offense 

As a second example of how ISAAC_PM can be used to explore a 2D 
slice of ISAAC'S parameter space, consider a scenario in which red's 
offensive capability is tested. This time both sides start out with 50 
ISAACAs each, and red's mission objective is to get as many red ISAACAs 
within a distance D=12 of the blue flag as possible. Blue defends with a 
personality defined by Wbiue = (0,10,0,10,0,0); i.e., blue "sees" only the 
enemy and does not distinguish between alive and injured reds. Blue's 
combat threshold is equal to negative 3 so that blue is fairly aggressive, 
and blue's sensor and fire ranges are rs = 4 and rF = 3, respectively. Red 
"attacks" with a more well-rounded personality, defined by the weight 
vector Wred = (10,40,10,40,0,50). Red's sensor and fire ranges are 
equal to the blue forces'. Combat ensues for a maximum 125 iteration 
steps on a size 50-by-50 notional battlefield. 

Figures 65-a and 65-b show the output of ISAAC_PM for this scenario, 
using red's single-shot probability, P^, as the x-coordinate of the 2D "slice" 
(with the value of x ranging from 0.001 to 0.015; note that Pblue = 0.003) 
and the "combat threshold' as the coordinate (with the value of y ranging 
from -25 to 25). Figure 65-a shows a three-dimensional plot of the 
fitness f(x,y) as a function of (x,y). Figure 65-b shows a contour plot of 
the same function, in which lighter shades of gray represent high fitness 
(near/~ 1) and darker shades represent low fitness (near/~ 0). 

Figure 65. Output of ISAAC_PM for sample run #2 
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Figure 65 shows an interesting non-monotonic behavior. In words, for 
single-shot  probabilities  Pred > 0.00 ,   red  performs   this  particular 
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mission "best" - as defined by the lighter colored regions in figure 65-b 
- by being neither too aggressive (with large negative values of combat 
threshold) nor too timid (with large positive values of combat 
threshold). 

Sample #3: Red Defense 

As a third, and final, example of how ISAACJPM can be used to explore 
a 2D slice of ISAAC'S parameter space, consider a scenario in which 
red's defensive capability is tested. As in the previous example, both sides 
start out with 50 ISAACAs each, but this time red's mission objective is 
to maximize blue casualties near the red flag. Red's fitness/~ 1 only when 
red is able to kill all (or most) of the blue ISAACAs that approach the 
red flag. Red defends its flag with a personality defined by weight vector 
ww = (10,40,10,40,0,0), meaning that red ISAACAs "react" to both 
friendly and enemy ISAACAs, but that they do not "see" either flag. 
They are initially positioned close to the red flag, as in both previous 
sample runs (see figure 63). Blue attacks with a personality defined by 
yvblue = (10,40,10,40,0,50), which is the same as red's except that blue 
also "sees" the red flag. Blue's sensor and fire ranges are rs = 4 and rF = 
3, respectively, its combat threshold is equal to negative 3 (so that it is 
fairly aggressive), and its single-shot probability Pblue = 0.005. Combat 
ensues for a maximum 125 iteration steps on a size 50-by-50 notional 
battlefield. 

Figure 66. Output of ISAAC_PM for sample run #3 
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Figures 66-a and 66-b show the output of ISAAC_PM for this scenario. 
Figure 66 uses red's sensor range as the «-coordinate of the 2D "slice" 
(with the value of x ranging from 1 to 15) and the "combat threshold' as 
the coordinate (with the value of y ranging from -25 to 25). Figure 
66-a shows a three-dimensional plot of the fitness f(x,y) as a function of 
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(x,y). Figure 66-b shows a contour plot of the same function, in which 
lighter shades of gray represent high fitness (near/~ 1) and darker 
shades represent low fitness (near/~ 0). 

Figure 66 shows that the red force does not perform its mission very 
well anywhere within this particular 2D "slice" of the total parameter 
space, except within a relatively small, but well-defined, region (i.e., the 
"hump" in figure 66-a and the lighter-colored region in figure 66-b). 
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Genetic Algorithm Evolutions of ISAACA 
Personalities 

As mentioned in the introduction to this paper, ISAAC has been 
designed with a view towards eventually encompassing three separate 
but mutually overlapping classes of run modes: 

• Fixed Rules, in which there is no "learning" and ISAAC is run 
using a fixed set of local rules applied at each time step. This 
mode is well suited for quickly playing simple "What iß" 
scenarios, and can be used to "search" for interesting emergent 
behavior. 

• Fixed Strategies, in which ISAAC is run using a fixed set of 
personalities (as in the fixed rule mode) but using rules that have 
been "evolved" off-line specifically to perform a given mission. 
Unlike the fixed rule mode, in which ISAAC is used to explore 
how an arbitrary set of parameter values unfolds in time, the 
fixed strategy mode involves a focused automated search for the 
personality "best" suited for performing some well-defined 
mission. 

• Adaptive Learning, in which ISAACAs use real-time heuristic 
adaptive learning strategies to "discover" new rules as scenarios 
unfold in time. 

The ISAAC that has been described thus far has been firmly, and 
exclusively, rooted in the first - fixed rule - mode. The general 
"template" for using ISAAC has heretofore consisted of (1) choosing 
red and blue personalities (sensor and fire ranges, personality weight 
vectors and/or any additional movement constraint rules), (2) defining 
the initial spatial disposition of forces for the two sides, possibly 
throwing in some notional terrain to complicate the battlefield, and (3) 
running ISAAC to see what pattern of behavior unfolds. 

From the point of view of trying to answer the basic question motivating 
this study - "Can land combat be described as a complex adaptive system?" (see 
Introduction) - such a simple-minded "anecdotal" approach is well 
suited. Even the few illustrative runs shown in the Sample Runs section 
provide strong evidence that many "high-level" behaviors such as 
penetration, clustering, encirclement, defensive posturing, and so on, 
can actually be thought of as naturally emergent behavioral patterns 
stemming from a local, nonlinear and decentralized collective 
dynamics. The short answer to the above question is, therefore, a very 
defensible   "yes." However, from a larger perspective, wherein one's 

163 



irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

interest lies more in using a multiagent-based simulation of combat to 
develop an analyst's toolbox for identifying, exploring, and possibly 
exploiting emergent patterns of behavior, such purely anecdotal 
evidence cannot suffice. The real question is, "Now that it has been 
demonstrated that land combat can be described as a complex system, so what? 
What do we do with this insight?" This section describes the first baby-step 
that ISAAC can be taught to make toward addressing this real question: 
to use a Genetic Algorithm (GA) to evolve the "best" personality for 
performing a specific mission; i.e., to evolve tactics from the "ground 
up." This paper thus next describes ISAACs first foray into a fixed 
strategy run mode. 

Genetic Algorithms (GAs): Brief Overview 

GAs are a class of heuristic search methods and computational models 
of adaptation and evolution based on natural selection. An overview of 
GAs, along with some sample problems, is provided in appendix B. 

In nature, the search for beneficial adaptations to a continually 
changing environment (i.e., evolution) is fostered by the cumulative 
evolutionary knowledge that each species possesses of its forebears. This 
knowledge, which is encoded in the chromosomes of each member of a 
species, is passed from one generation to the next by a mating process 
in which the chromosomes of "parents" produce "offspring" 
chromosomes. 

GAs mimic and exploit the genetic dynamics underlying natural 
evolution to search for optimal solutions of general combinatorial 
optimization problems. They have been applied to the Traveling 
Salesman Problem, VLSI circuit layout, gas pipeline control, the 
parametric design of aircraft, neural net architecture, models of 
international security, and strategy formulation. 

While their modern form is derived mainly from John Holland's work 
in the 1960s [24], many key ideas such as using "selection of the fittest" 
like population-based selection schemes and using binary strings as 
computational analogs of biological chromosomes, actually date back to 
the late 1950s. More recent work is discussed by Goldberg [25], Davis 
[26] and Michalewicz [27] and in conference proceedings edited by 
Forrest [28]. A comprehensive review of the current state-of-the-art in 
genetic algorithms is given by Mitchell [29]. 

The basic idea behind GAs is very simple. Given a "problem" - which 
can be as well-defined as maximizing a function over some specified 
interval or as seemingly ill-defined and open-ended as evolution itself, 
where there is no a-priori discernible or fixed function to either 
maximize or minimize - GAs provide a mechanism by which the 
solution space to that problem is searched for "good solutions." Possible 
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solutions are encoded as chromosomes (or, sometimes, as sets of 
chromosomes), and the GA evolves one population of chromosomes 
into another according to their fitness by using some combination 
(and/ or variation) of the genetic operators of reproduction, crossover and 
mutation. 

Each chromosome is usually defined to be a bit-string, where each bit 
position (or "locus") takes on one of two possible values (or "alleles"), 
and can be imagined as representing a single point in the "solution 
space." The fitness of a chromosome effectively measures how "good" a 
solution that chromosome represents to the given problem. Aside from 
its intentional biological roots and flavoring, GAs can be thought of as 
parallel equivalents of more conventional serial optimization 
techniques: rather than testing one possible solution after another, or 
moving from point to point in the solution phase-space, GAs move from 
entire populations of points to new populations. 

Reproduction makes a set of identical copies of a given chromosome, 
where the number of copies depends on the chromosome's fitness. The 
crossover operator exchanges subparts of two chromosomes, where the 
position of the crossover is randomly selected, and is thus a crude 
facsimile of biological sexual recombination between two 
single-chromosome organisms. The mutation operator randomly flips 
one or more bits in the chromosome, where the bit positions are 
randomly chosen. The mutation rate is usually chosen to be small. 

While reproduction generally rewards high fitness, and crossover 
generates new chromosomes whose parts, at least, come from 
chromosomes with relatively high fitness (this does not guarantee, of 
course, that the crossover-formed chromosomes will also have high 
fitness; see below), mutation seems necessary to prevent the loss of 
diversity at a given bit-position. For example, were it not for mutation, a 
population might evolve to a state where the first bit-position of each 
chromosome contains the value 1, with there being no chance of 
reproduction or crossover ever replacing it with a 0. 

A solution search space together with a fitness function is called a. fitness 
landscape. Eventually, after many generations, the population will, in 
theory, be composed only of those chromosomes whose fitness values 
are clustered around the global maximum of the fitness landscape. 

The Basic GA Recipe 

Although GAs, like cellular automata, come in many different flavors, 
and are usually fine-tuned in some way to reflect the nuances of a 
particular problem, they are all more or less variations of the following 
basic steps: 
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• Step 1: begin with a randomly generated population of 
chromosome-encoded "solutions" to a given problem 

• Step 2: calculate the fitness of each chromosome, where, fitness is 
a measure of how well a member of the population performs at 
solving the problem 

• Step 3: retain only the fittest members and discard the least fit 
members 

• Step 4: generate a new population of chromosomes from the 
remaining members of the old population by applying the 
operations reproduction, crossover, and mutation (see figure 91 in 
appendix B) 

• Step 5: calculate the fitness of these new members of the 
population, retain the fittest, discard the least fit, and re-iterate 
the process 

This    basic    five    step    algorithm    will    be    adapted    to    simple 
"mission-specific" ISAAC scenarios in the next section. 

Genetic Algorithms : Adapted to ISAAC 

Figure 67 shows a schematic of the general kind of "GA problem" in 
ISAAC. In simplest terms (that will be made more precise shortly), the 
problem is this: 

Given a fixed BLUE force (except for blue's initial spatial 
distribution on the battlefield), and a well-defined mission 
objective for RED, the GA's task is to evolve a personality 
for the RED force that is "best able" to satisfy the objective. 

The phrase "best able" here means a red force that performs best 
according to some well-defined measure of mission fitness (see below). 

To "solve" this problem, a pool of initially randomized red ISAACA 
personalities (shown at the bottom left of figure 67) is evolved in time 
according to the basic GA recipe defined above. Each personality is 
defined by a unique ISAACA chromosome, consisting of N genes (see 
below). The "fitness" of each chromosome (and, hence, each 
personality) is determined by how well that personality has performed a 
certain user-defined mission (see Mission Objective below). 
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Figure 67. Schematic of the GA "problem" in ISAAC 
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The personality, P/t), of the i* red ISAACA in the personality pool at 
time t, is defined by a unique ISAACA chromosome, C{(t), defined by 

Ci(t)=g1 g2 ■■•gN' 

where g- is the j* gene. In the current version of ISAAC_GA, there are 

a total of N=45 genes, though not all are necessarily used. 

Table 9 provides a description of each of the 45 genes. Note that, unlike 
some common textbook GA examples (such as the illustrative example 
discussed in Appendix B), the chromosome is not a binary-valued string 
that consists only of O's and l's. Instead, each gene is real-valued, and any 
appropriate translations to integer values and or binary toggles (on/off) 
are performed automatically by the program. 

For the most part, each gene encodes the value of a basic parameter 
defining the red force. For example, g1 encodes red's sensor range, g, 
encodes red's fire range, and so on. Some genes - for example, the odd 
numbered genes between g. and g27 - encode the sign (+ or -) of the 
immediately preceding gene, but not the actual value. Thus, the actual 
value of each of the components of red's personality weight vector, for 
example, is actually encoded by two genes; one gene specifying the 
component's absolute value, the other gene defining its sign. Note also 
that the lighter colored genes (genes g, through g35) are ahoays used; 
that is, they are always a part of the genotype specifying the red force. 
The more darkly colored genes (genes g36 through g42 and genes g43, g44 

and g4.) are used only if certain software flags are set in the data input 
file fo/lSAACjSA (see ISAAC_GAs User's Guide for details below). 
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Table 9. ISAACA Chromosome (see text) 
Gene Function 

. ^:-1-.K sensor range 
-:V  :.2-:---::: fire range 

.[I   -':: :,:■:,: threshold range 
■-,:■::: :;* :;■::.::■.;■• ■:■ alive red:alive red weight (wl) 

•■./■:■: ;5 ;•■::: sign (+ or-) of wl 
:-xv.-f::?:::--g .:.■:;:;:? alive red:alive blue weight (w2) 
:::.:;::::::.':; 7 '.V. :::.:.:,::, sign (+ or-) ofw2 

8 alive red:injured red weight (w3) 
: ;v:::": :::':&.:::: ::■::;•:: sign (+ or-) ofw3 

:",:■. 10:::;::-'- alive redtinjured blue weight (w4) 
:;;...;   :ll^::. sign (+or-) of w4 
■■■:^ :-,:;I2'-::*,:

::-> alive red:red flag (w5) 
13 sign (+or-) ofw5 

:..■.::; ::.:::.'.:14--:.:::■-:- alive red:blue flag (w6) 
:■::■ :V::15/:■■"::". sign (+ or-) ofw6 

^._   .   ■ 

injured red:alive red weight (wl') 16 
17: sign (+ or-) of wl' 

■::-:?;:--,i8::^:^ injured red:alive blue weight (w2') 
■:"■". :.:-::-M9:"-::^.::::::::: sign (+ or-) ofw2' 
--::--.:---20 injured red:injured red weight (w3') 

21   : : sign (+ or-) ofw3' 
?Vi-::'-:"-.::!22: s injured redünjured blue weight (w4') 

23 sign (+ or-) ofw4' 
24 injured red:red flag (w5T) 

::■:--■;■'.25::-:'::'.::- sign (+ or-) ofw5' 
26 injured red:blue flag (w6') 

:..V-:;:27--;:.::,^ sign (+ or-) ofw6 
y::^W^^ alive ADVANCE threshold 

29 alive CLUSTER threshold 
::-:-:;30,::>;: alive COMBAT threshold 
W^SI:' - sign (+ or -) of gene 30 

32 injured ADVANCE threshold 
;:.:.:::v33: ::::-:- injured CLUSTER threshold 

^■-:.:-:-:34   :\& injured COMBAT threshold 
sign (+ or-) of gene 34 35 

36' ' min_dist_flag 
37 alive redxed min distance 
38 alive red:blue min distance 
"0 alive red:red flag min distance 
40'••-' injured red:red min distance 
41 injured red:blue min distance 

!-.42 injured red:red flag min distance 

?C    43?.' •" size of initialization box 

.. 34 x-coordinate of initialization box 

. ..':::::'1> " :i:: y-coordinate of initialization box 
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Mission Objective 

The mission objective, or fitness, is a measure of how well red ISAACAs 
have performed a user-defined mission. Typical missions might be to 
"get to blue flag as quickly as possible," "minimize red casualties," "maximize the 
ratio of blue to red casualties," and so on, or some combination of these. 

More specifically, the user - who, for discussion purposes, can be 
thought of as a Supreme Commander (SC) - can assign up to ten 
weights - 0 < w\, w%,..., w\§ < 1 - to represent the relative degree of 
importance afforded to a particular mission objective "primitive," mx 

(see table 10 and discussion below). (At this introductory level, of 
course, the list of mission primitives is still fairly short and simple, 
though it is flexible enough to enable the user to define many 
non-trivial objectives.) The actual mission objective, or fitness function, 
M, is a weighted sum of mission primitives: 

M= ty^mi+a/g^H htyjo^io- 

Table 10. A description of GA weights 

Description 

minimize time to goal 

minimize red (i.e. friendly) casualties 

maximize blue (i.e. enemy) casualties 

maximize red-to-blue (i.e. friendly-to-enemy) 
survival ratio 

minimize red (i.e. friendly) center-of-mass 
distance to blue (i.e. enemy) flag 

maximize blue (i.e. enemy) center-of-mass 
distance to red (i.e. friendly) flag 

maximize number of red (i.e. friendly) within an 
SC-defined distance of the blue (i.e. enemy) flag 

ws m8 minimize number of blue (i.e. enemy) within an 
SC-defined distance of the red (i.e. friendly) flag 

w9 m9 minimize number of red fratricide "hits" (i.e. on 
friendly side) 

wJ0 m10 maximize number of blue fratricide "hits" (i.e. on 
enemy side) 

For example, a simple mission objective might be to "get to the blue flag 
as quickly as possible," in which case w1 = 1 and M = mv If, in addition, the 
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SC wishes to "minimize red losses" (defined by primitive m2), but still cares 
more about minimizing the time it takes red to get to the blue flag than 
about casualties, the SC might set wt equal to 3/4 and w2 = l-a/; = 1/4. 
The total mission fitness in this case is then given by M = (3/4) mt+ (1/4) 
m2. A more complicated mission objective might be to simultaneously 
satisfy several mission primitives: 

• get as many red ISAACAs within a certain range of the blue flag as 
possible (defined by m7) 

• keep blue forces as far from red flag as possible (defined by m6) 

• minimize red casualties (defined by m2) 

• maximize red to blue losses (defined by m4) 

• minimize red fratricide (defined by m9) 

so that, if each of these primitives is afforded equal weight, the 
composite mission objective is in this case given by M = 
(1/5) (m2+m4+m6+m7+m9). Of course, not all such composite missions 
may make sense, or lead to red force personalities that are able to 
perform them to a desired (i.e., SC-prescribed) fitness level. It is the 
SC's task to ensure that mission objectives are both logically sound and 
amenable to "solution" (see GA Sample Runs). 

Before providing a bit more detail about each of these ten mission 
primitives, we first make a general technical comment concerning what 
"function" is really being maximized. The user may have noticed that 
half of the GA weights refer to mission primitives that involve functions 
whose values must be minimized (mr m2, m5, ms and m9) and half refer to 
primitives that involve functions whose values must be maximized (m3, m4, 
m6, m7 and mI0). In fact, all mission primitives are represented within 
the program by a function that takes values between zero 
(corresponding to zero fitness) and one (corresponding to maximum 
fitness) and that the GA attempts to maximize. The result is that while it 
may be more intuitively natural to refer to some mission primitives 
(such as m, = "minimize time to goal") in terms of a quantity that must 
be minimized, in fact, all primitives are actually defined inside of the 
program in such a way that the GA consistently tries to maximize their 
fitness. 

The general template for how each primitive is treated internally by the 
program is as follows. First, for each primitive mP the minimal (=xmin) 
and maximal (=xm3X) possible values for the pertinent parameter x is 
identified. For example, for my = "minimize time to goal" the pertinent 
variable is x = "time to goal;" for m2 - "minimize red casualties" the 
pertinent variable is x = "number of red casualties," and so on. Next, a 
simple function f=f(x) is defined that takes on values between zero and 
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one so that/(xmin)= 0 corresponds to "minimal fitness" and/(xmax)= 1 
corresponds to "maximal fitness:" 

/=       1 (*max      #min) / 

where the (the user-defined) power n (see penalty_power in Contents of 
ISAAC_GA's Input Data File) determines how rapidly/ falls off from its 
maximal to minimal fitness. In general, the closer the value of/ is to 
the value 1, the "better" the red ISAACAs are said to have performed 
the particular mission primitive that / is the fitness function for. See 
figure 68. 

Figure 68. Schematic for fitness function f (corresponding to mission 
primitive m) that is internally maximized by the program 

f=(i->ax:x\)n 

max 

pertinent parameter for mission primitive m 

The next few sections provide a self-contained reference for each of the 
ten mission primitives and the corresponding functions that the GA is 
asked to maximize. 

Mission primitive m1 

The first mission primitive consists of minimizing the time to goal. The 
user can define an auxiliary condition triggering the red-at-goal flag by 
requiring that a certain number of red ISAACAs must be within a range 
R of the blue flag (see termination_code in Contents oflSAACjGA's Input 
Data File). 

The pertinent parameter for m, is tG = "time to goal." The minimal 
possible value of tG, tG>min, is determined by computing how much time 
it would take an ISAACA that is closest to the blue flag to get to the flag 
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if there were no other ISAACAs on the battlefield. The maximum value, 
tG>max, is set by the user. 

The fitness function for m1 is given by/; = ( (tG,max - tG)/(tG,max - tG,min) )n. 
Notice that if the red ISAACAs reach the blue flag only at the maximum 
allotted time, their mission fitness is zero. Conversely, if they reach the 
flag in the minimal possible time, their fitness is one. 

Mission primitive m2 

The second mission primitive consists of minimizing the total number 
of red casualties. 

The pertinent parameter for m2 is ^ = "number of red ISAACAs at time 
t." Note that no distinction is made between alive or injured ISAACAs. 
The minimal possible value of R<, R^, is equal to zero, while the 
maximum possible value is R^ = RQ, or the total number of red 
ISAACAs at time t = 0. 

The fitness function for m2 is given by j^ = (Rj. / Rg)", where T is the 
termination time for the run (which can vary depending on the selected 
termination condition; see termination_code in Contents of ISAAC_GA's 
Input Data File). Notice that if red suffers no losses at all, so that Rj. = R,,, 
then ^2 = 1. Conversely, if all red ISAACAs are lost, then their mission 
fitness for this primitive is zero. 

Mission primitive m3 

The third mission primitive consists of maximizing the total number of 
blue casualties. 

The pertinent parameter for m2 is Bt = "number of blue ISAACAs at 
time t." Note that no distinction is made between alive or injured 
ISAACAs. The minimal possible value of Bt,, Bmin, is equal to zero, while 
the maximum possible value is Bmax = B0, or the total number of blue 
ISAACAs at time t = 0. 

The fitness function for m3 is given by^ = (1 - BT / B0)
n, where T is the 

termination time for the run (which can vary depending on the selected 
termination condition; see termination_code in Contents of ISAAC_GA's 
Input Data File). Notice that if blue suffers no losses at all, so that BT = 
B0, then, from red's point of view, the mission fitness is minimal, zndf3 

= 0. Conversely, if the red ISAACAs have successfully killed all blue 
ISAACAs - so that BT = 0 - then their mission fitness is maximal, and f3 

= 1. 

Mission primitive m4 

The fourth mission primitive consists of maximizing the ratio between 
red and blue casualties. 
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There are two pertinent parameters for m4: R, = "number of red 
ISAACAs at time t" and Bt = "number of blue ISAACAs at time t." Note 
that no distinction is made between alive or injured ISAACAs. The 
minimal possible values of R^ and Bt, are equal to zero, while the 
maximum possible values are R^ = B0 and Bmax = B0, or the total 
number of red and blue ISAACAs at time t = 0. 

The fitness function for m4 is given by 

■ßo-2 i ( RT/RQ \   ,     Bo 
/4=/4(%,ßT)=(^|)"[gEf) ^.Bo-! J\BT/BO J      BO—1 J 

where T is the termination time for the run (which can vary depending 
on the selected termination condition; see termination_code in Contents 
of ISAAC_GA's Input Data File). This fitness function is defined to give 
intuitively reasonable values for some extremal values. For example, 
^(Rj.=0, BT) = 0 for any value of BT, reflecting the intuition that if the 
entire red side is killed, the mission fitness is minimal, regardless of the 
number of remaining blue forces. If the fraction of remaining forces is 
equal on both sides, so that, say, Rx/Ro = BT/B0 = p, then /^(pR^pB^ = 
1/2, reflecting the intuition that if red only keeps pace with blue 
casualties (but that, perhaps, both sides have suffered some casualties), 
the mission fitness lies somewhere halfway between its minimal and 
maximal values. Finally, if the number of red ISAACAs at time t = T is 
equal to the initial number of red ISAACAs while the number of blue 
ISAACAs has been reduced to one,24 the mission fitness approaches its 
maximal possible value: f4.{R-T = Ro,BT~ 1) -*• 1 • Intermediate values 
of Rj. and BT yield values for f4 between zero and one. 

Mission primitive m5 

The fifth mission primitive consists of minimizing the average red 
center-of-mass distance to the blue flag. 

The pertinent parameter for ms is d = "distance between the 
center-of-mass of the red force and the position of the blue flag at time 
t." The xml CM and yral m coordinates of the red center-of-mass are defined 
by 

Rt Rt 
*red,CM(') = "5" X xTedß)     and    3>red,CM(Ö = öZ 3>red,i(') > 

' j=l ' j=l 

where xre4i(t) and yredi(t) are the x and y positions of the i* red ISAACA 
at time t, respectively, and i^ is the number of red ISAACAs at time t. 

24     The value "1" is the minimal allowable value for B0 in calculating/^. In the event 
that B0=0, B0 is automatically set equal to 1. 
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The fitness function for % is given hy f5 = ( (dmax - dave)/dmax )n, where 
dmax = V2 * batüe_size (see General Battle Parameters in Contents of ISAAC 
Data Input File) and dave is the average red center-of-mass distance to the 
blue flag: 

1   T 

«ave = "^ JL 
*=1L 

*blue-flag _ *red, CM^) J   + (^blue-flag ~ J'red, CM^) J 

where T is the termination time for the run (which can vary depending 
on the selected termination condition; see termination_code in Contents 
of ISAAC_GA's Input Data File). Notice that if the red force is close to the 
blue flag at all times (so that dave ~ 0), then^ ~ 1. Conversely, if the red 
ISAACAs spend most of their time far from the blue goal (so that dave ~ 

O.then/j-O. 

Mission primitive m6 

The sixth mission primitive consists of maximizing the average blue 
center-of-mass distance to the red flag. 

The pertinent parameter for m6 is d = "distance between the 
center-of-mass of the blue force and the position of the red flag at time 
t." The xUu^CM and yblmCM coordinates of the blue center-of-mass are 
defined by 

1   Bl 1   Bt 

*blue,CM(*) = J D *blue,i(0     and    ^blue.CM^) = ^ X ?blue,t(0 > 

where xUlKi(t) and yUuei(t) are the x and y positions of the i* blue 
ISAACA at time t, respectively, and 2?t is the number of blue ISAACAs at 
time t. 

The fitness function for m6is given by/fi= (dave/dmax)
n, where dmax = -J2 * 

battle_size (see General Battle Parameters in Contents of ISAAC Data Input 
File) and dave is the average blue center-of-mass distance to the red flag: 

1   T 

«ave = "^ Zu *red-flag _ *blue,CM(*) J   + (^red-flag ~ J'blue.CMCO J 

where T is the termination time for the run (which can vary depending 
on the selected termination condition; see termination_code in Contents 
of ISAACjGA's Input Data File). Notice that if the blue force is close to 
the red flag at all times (so that dave ~ 0), then f6 ~ 0. Conversely, if the 
blue ISAACAs are forced, by red, to spend most of their time far from 
the red goal (so that dave ~ dmax), then/, ~ 1. 
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Mission primitive m7 

The seventh mission primitive consists of maximizing the number of 
red ISAACAs within an SC-defined distance of the blue flag. 

The pertinent parameter for m7 is Rt(D)= "number of red ISAACAs 
within a distance D of the blue flag at time t," where D is a user-specified 
parameter (see flag_containment_range in Contents of ISAAC_GA's Input 
Data File). Note that no distinction is made between alive or injured 
ISAACAs. The minimal possible value of R^D) is equal to zero, while 
the maximum possible value, R^, clearly depends on D and is 
internally calculated by the program. 

The fitness function for m7 (=f7) is given by a time average of 
(R^D)/!*^)", averaged between tmin (corresponding to the earliest 
possible time that a red ISAAGA could move to within a distance D of 
the blue flag) and tmax = T is the termination time for the run (which 
can vary depending on the selected termination condition; see 
termination_code in Contents ofISAAC_GA 's Input Data File): 

J'7 = TT~  Z,  l-p— J     fcmin   ^_ J        V -".max frmin  /__ * 
mm 

Notice that if red is completely unable to penetrate blue's territory for 
the duration of the run, so that R^D) = 0 for times t, then f7 = 0. 
Conversely, if red is able to maintain a constant presence within a 
distance D of blue's flag (which is likely only in the event that there are 
few or no blue forces defending the flag), then their mission fitness for 
this primitive approaches the value one. 

Mission primitive ms 

The eighth mission primitive consists of minimizing the number of blue 
ISAACAs within an SC-defined distance of the red flag. 

The pertinent parameter for ms is Bt(D)= "number of blue ISAACAs 
within a distance D of the red flag at time t," where D is a user-specified 
parameter (see flag_containment_range in Contents of ISAAC_GA's Input 
Data File). Note that no distinction is made between alive or injured 
ISAACAs. The minimal possible value of Bt(D) is equal to zero, while 
the maximum possible value, Bmax, clearly depends on D and is 
internally calculated by the program. 

The fitness function for m8 (=f8) is given by a time average of (1 - 
Bt(D)/Bmax)

n, averaged between tmin (corresponding to the earliest 
possible time that a blue ISAAGA could move to within a distance D of 
the red flag) and tmax = T is the termination time for the run (which can 
vary depending on the selected termination condition; see 
termination_code in Contents oflSAACjG-A 's Input Data File): 
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T BAD) 
f*'' ~ T-t ■       "     [" ß *     '•min  t— t  .     \ "" l~" lmin 

Notice that if blue is completely unable to penetrate red's territory for 
the duration of the run, so that Bt(D) = 0 for times t, then red may be 
said to have "succeeded in keeping blue away from its own flag" and/7 = 
1. Conversely, if blue is able to maintain a constant presence within a 
distance D of red's flag (which is likely only in the event that there are 
few or no red forces available to defend the flag), Bt(D) ~ Bmax and red's 
mission fitness for this primitive approaches zero. 

Mission primitive m9 

The ninth mission primitive consists of minimizing the total number of 
red fratricide hits. This primitive is viable only if the red_frat_flag 
software "flag" is set equal to "1" in the GA_DATA.dat input data file, so 
that the red fratricide option during an ISAAC run is enabled (see 
below). Recall, also, that a fratricide "hit" is just that, a hit, and not 
necessarily a "kill." See Fratricide in ISAACA Combat. 

The pertinent parameter for m9 is Fred = "total number of red fratricide 
hits during the run." (Fred is accumulated over the termination time T 
for the run, which can vary depending on the selected termination 
condition; see termination_code in Contents of ISAAC_GA's Input Data 
File). The minimal possible value of Fred is obviously zero, while the 
maximum possible value is arbitrarily clamped at Fredmax = RQ, or the 
total number of red ISAACAs at time t = 0. If the actual value Fred 

exceeds Fred max, Fred is internally redefined to equal Fred max. 

The fitness function for m9 is given by f9 = (1 - Fred / RQ)", Notice that if 
red suffers no fratricide hits at all, so that Fred = 0, then f9 = 1. 
Conversely, if red ISAACAs are hit by friendly forces at least RQ times, 
then red's overall mission fitness for this primitive is zero. 

Mission primitive m 10 

The tenth mission primitive consists of maximizing the total number of 
blue fratricide hits. This primitive is viable only if the blue_frat_flag 
software "flag" is set equal to "1" in the GA_DATA.dat input data file, so 
that the blue fratricide option during an ISAAC run is enabled (see 
below). Recall, also, that a fratricide "hit" is just that, a hit, and not 
necessarily a "kill." See Fratricide in ISAACA Combat. 

The pertinent parameter for m10 is FbIue = "total number of blue 
fratricide hits during the run." (Fblue is accumulated over the 
termination time T for the run, which can vary depending on the 
selected termination condition; see termination_code in Contents of 
ISAACjG-A's Input Data File). The minimal possible value of Fblue is 
obviously zero, while the maximum possible value is arbitrarily clamped 
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at Fblue max = B0, or the total number of blue ISAACAs at time t = 0. If the 
actual value Fblue exceeds Fbluemax, Fblue is internally redefined to equal 
F 

blue.max' 

The fitness function for m10 is given by/i0 = (1 - Fblue / B0)
n, Notice that 

if red suffers no fratricide hits at all, so that Fblue = 0, then f10 = 1. 
Conversely, if red ISAACAs are hit by friendly forces at least B0 times, 
then red's overall mission fitness for this primitive is zero. 

ISAAC_GA's GA Recipe 

ISAAC_GA couples a slightly older version of ISAAC'S Core Engine with a 
basic GA algorithm adapted from [27] (see appendix D). In 
pseudo-code, the main components of this recipe appear as follows: 

read GA_DATA and GAJSAAC files 
for generations,gmax 

for personality=1,pmax25 

decode chromosome 
for initial_condition=1,icmax 

run ISAAC'S Core Engine 
calculate_fitness(initial_condition) 

next initial_condition 
calculate_mission_fitness() 

next personality 
find_the_best_personality() 
select_survivors_from_population() 
perform_single_point_crossover() 
perform_mutation() 
update_progress_report() 

next generation 
write best personality to file and close all data files 

In words, ISAAC_GA first reads in two data files: GA_DATA.dat (that 
contains all variables pertaining to the GA) and GA_ISAAC.dat (that is 
a truncated form - appropriate for this slighüy older version of the 
Core Engine - of the data input file described in Contents of ISAAC'S 
Data Input File). The contents of both files will be described below. 

Next, the program uses a randomized pool of chromosomes to define 
the 1st generation of red personalities. For each such red personality, 
and for each of icmax initial spatial configurations of red and blue 
forces (remember that the blue personalities are fixed in 
GA_ISAAC.dat), the program then runs ISAAC'S core engine to 
determine the mission fitness. After going through both loops, the 
program sorts the personalities according to their mission fitness values, 

25 Note that the total number of red personalities - i.e. population size - is defined 
by the variable POPSIZE, found in the header file GA.h; see appendix B and Concise 
User's Guide to ISAAC_GA). 
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and selects some to be eliminated from the pool and others to breed. It 
then performs the basic GA functions of crossover and mutation (see 
Appendix B). Finally, having defined a new generation of red 
personalities, the whole process is continued until either the user 
interactively interrupts the evolution or the maximum allotted 
generation number has been reached. 

Concise User's Guide to ISAAC_GA 

As mentioned above, ISAAC_GA essentially provides a genetic 
algorithm "front-end" to a slightly older version ISAAC'S Core Engine 
than the one described in the Overview of ISAAC section. Specifically, 
the version of ISAAC that is embedded within ISAAC_GA allows only 
one squad per side and excludes all command and control structures. 
This minor deficiency will be remedied in future versions. 

Figure 69. ISAAC_GA's opening screen 

ISAAC 
Irreducible Semi-Autonomous 

Adaptive Combat 
(Genetic Algorithm'Evolver') 

Version 
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A 223 

e 
Q2 
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Starting ISAAC_GA 

Assuming that the ISAAC "package" has been installed according to the 
instructions given in the previous section Installing ISAAC, the genetic 
algorithm evolver can be run by going to the appropriate subdirectory 
on the hard drive (say, C:/ISAAC>) and typing the command 
ISAAC_GA followed by <ENTER> on the DOS command line. You will 
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see the opening screen (figure 69), specifying the current version and 
build date of the program and a prompt to press <ENTER> to continue. 

The next screen prompts for a series of five file names (see figure 70): 
(1) GA_ISAAC.dat, which is the default name of the file that contains a 
truncated version of ISAAC'S input data file (see Contents of ISAAC'S 
Input Data File in A Concise User's Guide to ISAAC); (2) GAJDATAdat, 
which is the default name of the file that contain GA-specific data 
entries needed to start the run (its contents are described in the next 
section); (3) GA_STAT.dat, which is the file the user wishes to contain 
the statistical summary of the impending run (see Contents of 
ISAAC_GA's Statistics Output File: GA_STAT below); (4) GA_BEST.dat, 
which is the file the user wishes to contain a running record of all the 
"best" personalities as they are evolved by the program (see 
best_personalities_to_flle? in Contents of ISAACjGA's Data Input File: 
GAJDATA below); and (5) ISAAC.dat, which is a standard ISAAC data 
input file that the user wishes the program to write the best overall 
personality to (along with other fixed parameter entries from 
GA_ISAAC.dat) so that it can be run interactively using the Core Engine. 
Note that to run this file, the single-squad version of ISAAC must be 
used (see ISAACJSQ in table 4). 

Figure 70. ISAAC_GA's file name prompt screen 

SPECIFY INPUT FILES 

ISAAC input (GA_ISAAC.dat): ? 
GA input (GA_DATA.dat): ? 

SPECIFY OUTPUT FILES 

GA summary output (GA_STAT.dat):     ? 

GA 'best' output (GA_BEST.dat): ? 
Output ISAAC.dat file (ISAAC.dat):        ? 

Contents of ISAAC_GA's Data Input File: GA_DATA 

GA_DATA.dat contains a user-modifiable listing of various GA-specific 
variables that are used to control the execution of the GA front-end to 
ISAAC. It consists of four separate sections (see figure 71): 
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• GA Parameters, which includes parameters specifying the 
maximum number of generations that the user desires to run, 
the number of red and blue initial spatial configurations to 
average over, software "flags" that toggle the use of specific 
ranges of genes in the personality chromosome, and so on. 

• GA Penalty Weights, which includes parameters that assign 
relative weight values to each of the ten mission "primitives" 
defined above (see Mission Objective). 

• Termination parameters, which includes parameters specifying 
the exact conditions under which a given run will terminate. 

• ISAACA chromosome, which includes parameters specifying the 
values of each of the 45 genes that make up a full chromosome 

defining a red personality 

Short descriptions of each of the variables appearing in GA_DATA,dat 
are given below. These can be used as a reference guide for selectively 
altering this file's contents to tailor specific evolutions. 

num_generario:ns 

This is the total number of generations that the user wants to run. A 
single generation consists of running ISAAC'S core engine for each 
initial condition (see num_initial_conds) and each personality (where 
the total number of red personalities - i.e., population size - is defined 
by the variable POPSIZE, found in the header file GAJh; see Appendix 
B). 

num_initial_conds 

This is the total number of randomized initial spatial configurations of 
red and blue ISAACAs that will be averaged over in calculating a 
mission fitness for a given personality. The typical number of initial 
conditions used in the sample runs below are between 15-50. 

max_time_to_goal 

This variable sets a limit on the maximum number of iteration steps 
allowable per each run of the evolution. Depending on the termination 
condition (see termination_code?), a given run may end prior to the 
time specified in max_time_to_goal. Typical values for battiefield sizes 
of ~ 80-by-80 are between 100-150 iteration steps. 

penalty_power 

This variable refers to the power n used in defining the fitness function, 
/ for each of the ten mission primitives (see figure 68 in Mission 
Objective).  The value  of penalty_power  effectively  determines  how 
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rapidly/ falls off from its maximal to minimal value (n=l yields a linear 
fall-off, 7i=2 yields a quadratic fall-off, and so on). 

best_personalities_to_file? 

This software flag determines whether the program will automatically 
keep track of the best current personality (i.e., chromosome) during 
the evolution. If best_personalities_to_file? = 1, a user-specified file will 
contain a running tally of the best chromosomes for the entire run. In 
particular, whenever, after the first generation, the program finds a 
personality whose mission fitness exceeds that of the previously 
recorded personality it appends the appropriate data file with the better 
chromosome. Since the computational cost needed to perform this 
function is minimal, the user is encouraged to keep it always set equal to 
1. If best_personalities_to_file? = 0, no updates of best personalities is 
made. 

min_dist_genes_flag 

This software flag controls the use of genes g36 through g42, that define 
red's minimal distance constraints (see ISAACA Adaptability). If 
min_dist_genes_flag = 1 these genes will be used in defining the red 
personalities, else they will not. Keep in mind that even if 
min_dist_genes_flag = 1, the program may itself determine that it would 
be "better" not to use any minimal distance constraints by finding an 
appropriate value of g36 = min_dist_flag. 

initial_condition_genes_flag 

This software flag controls the use of genes g43 through g45, that define 
the size and x,y coordinates of red's initial spatial configuration. If 
initial_condition_genes_flag = 1 these genes will be used in defining 
red's initial condition, else they will not. 

wl_time_to_goal 

This variable defines the relative weight afforded to the 1st mission 
primitive (see Mission Objective), that consists of minimizing the time to 
goal. 

w2_friendly_loss 

This variable defines the relative weight afforded to the 2nd mission 
primitive (see Mission Objective), that consists of minimizing the total 
number of red casualties. 

w3_enemy_loss 

This variable defines the relative weight afforded to the 3rd mission 
primitive (see Mission Objective), that consists of maximizing the total 
number of blue casualties. 
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w4_red_toJbluejsurvival_ratio 

This variable defines the relative weight afforded to the 4th mission 
primitive (see Mission Objective), that consists of maximizing the ratio 
between red and blue casualties. 

w5_friendly_CM_to_enemy_flag 

This variable defines the relative weight afforded to the 5th mission 
primitive (see Mission Objective), that consists of minimizing the cumulative 
distance between the center-of-mass of the red ISAACAs and the blue flag. 

w6_enemy_CM_to_friendly_flag 

This variable defines the relative weight afforded to the 6th mission 
primitive (see Mission Objective), that consists of maximizing the 
cumulative distance between the center-of-mass of the blue ISAACAs and the red 

flag- 

w7_friendly_near_enemy_flag 

This variable defines the relative weight afforded to the 7th mission 
primitive (see Mission Objective), that consists of maximizing the total 
number of red ISAACAs that are within a user-defined distance D (see 
flag_containment_range) of the blue flag. 

w8_enemy_near_friendly_flag 

This variable defines the relative weight afforded to the 8th mission 
primitive (see Mission Objective), that consists of minimizing the total 
number of blue ISAACAs that are within a user-defined distance D (see 
flag_containment_range) of the red flag. 

w9_red_fratricide_hits 

This variable defines the relative weight afforded to the 9th mission 
primitive (see Mission Objective), that consists of minimizing the total 
number of red fratricide hits. 

wl 0_blue_fratricide_hits 

This variable defines the relative weight afforded to the 10th mission 
primitive (see Mission Objective), that consists of maximizing the total 
number of blue fratricide hits. 

termination_code? 

This software flag controls how a run (for a given personality) will 
terminate. It can be assigned one of four integer values: 1, 2, 3 or 4. If 
termination_code? = 1, a run will terminate when the first red ISAACA 
reaches the blue flag. If termination_code? = 2, a run will terminate 
when    the    number    of   red    ISAACAs    within    a    range    R    = 
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flag_containment_range (see below) exceeds the threshold N = 
containment_number (see below). If termination_code? = 3, a run will 
terminate when the position of the red force's center-of-mass is closer to 
the blue flag than a threshold distance (defined by 
red_CM_to_BF_frac; see below). If termination_code? = 4, a run will 
terminate when the number of iterations t = niax_time_to_goal (see 
above). 

flag_containment_range 

This variable sets a range around either the red or blue flags 
(depending on the values of other variables) which is used to count the 
number of ISAAGAs near a flag. For example, if the relative weight for 
maximizing the number of red ISAACAs near the blue flag is nonzero 
(i.e., if the value of the variable w7jFriendly_near_enemy_flag > 0), the 
value of flag_containment_range sets the pertinent range from the blue 
flag. 

containment_number 

If the termination flag is set for terminating a run when the number of 
red ISAACAs within a range R (= flag_containment_range) exceeds a 
certain threshold N - i.e., if termination_code? = 2; see above - N is 
specified by the variable containment_number. 

red_CM_to_BF_frac 

If the termination flag is set for terminating a run when the position of 
the red force's center-of-mass is closer to the blue flag than a threshold 
distance D - i.e., if termination_code? = 3; see above - D is specified by 
the variable red_CM_to_BF_frac. 

ISAACA Chromosome Entries: gene[i] 

The remaining entries - gene[l] through gene[45] - define not the 
values of the individual genes of a red personality chromosome but the 
minimum and maximum values that those genes are actually allowed to 
take in the program. For example, the first entry, 

gene[1]:S_range 1,10 

means that the first gene, corresponding to red's sensor range, can only 
take on values between 1 and 10. Note that the minimum and 
maximum entries for genes that correspond to the signs (+ or -) of other 
variables (such as gene[5]:wl_alive_sign) are 0 and 1, respectively. 
Either of these values can actually be set equal to any real value between 
0 and 1. The sign is determined internally by generating a random 
number between 0 and 1, comparing this number to the gene "value" 
(also between 0 and 1 if the file shown in figure 71 is used), and 
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choosing the "+" sign if the random number > gene value, else choosing 
the "-" sign. A greater or lesser likelihood of choosing "+" versus "-" can 
therefore be regulated by selecting appropriate minimum and 
maximum entries for a given sign gene. 
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Figure 71. Sample ISAAC_GA data input file 
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:i:::gene[23;:F_range:: :;: ::: 1,10 : 
::;:gehe|;33:C_räftge::::;:i: :> % i;:10:i; 
: .gene C4i:wli3Tlve;:::;::;:: ::0;:100; 
;. gene [5]: wli^ali veisl gri    :! ; ;0 ;i:':: 
j;;:j|ehetBj5W^Tiyfi"^::v.:

:-.' fl^iaa 
:SgeheC7j:wZ^aT1ye-sign: ■;:;:: ■ ■ :0;1:   , 

genet8];:w3_aTive 0,100 
gene[93:w3_alive_s1gn 0,1 
gene[10]:w4^.alive 0,100 
gene[ll]:W4_aTive_sign 0,1 

:"'seneCi23::-W5i»11ve 0,100 
: genetl3]:w5^a1ive_sign 0,1 

geneH4]:w6_aTi»e 0,100 
I generi5]:wB_ali»e_sign 0,1 
I geneti6):wl_injured 0,100 
I geneC173:wl_injured_sign 0,1 

genetlS]:w2_1njured : 0,100 
: geneCl93-w2_1njured_sign 0,1 

geneC20]:w3_in3ured 0,100 
geneC21J:W3.;-in;jured_s-fgn 0,1 
gene[22]::w4_injured 0,100 

: gene[233:w4^injuredisign 0,1 
g"ene[243:w5_injured 0,100 

i geneC25]:w5_1njured_stgn .0,1 
geneC263:w6^i.njured 0,100 
gene[27]:wS_rn3ured_sign 0,1 
geneC28X:A0V_alive 0,20 

: genef29]:CLS_alive 0,50 
gene[303:C0T_alive : 0,50 

: geneC31]:CBT_alive_sign 0,1 
I gene[321:ADV_injured 0,20 
: gene[33]:CLS_injured 0,50 
I gene[343:CBT_1n;jured .   0,50 

gene[353:CBT_injured_sign 0,1 
; geneC363:niin_d1st_flag 0,1 
: geneC373:R_R_m1n_dist^a1ive 0,10 
■ gene[383:R^B_;iiiin_dist^alive 0,10 
: geneC393:R_R_gpal_m1n_alive 0,40 
I gene[403:R_R_min_dist_injured 0,10 
: geneC413:R_B^min_dist_injured 0,10 

gene[423:R_R_gpal_min_1.njured 0,40 
genet433:initial_box_size 1,50   ■ 
gene[443:1n1t1al_box_center_)t 1,30 
gene[453:initial_bpx_center_y 1,30 
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Contents of ISAAC_GA's Data Output Files 

As mentioned earlier, ISAAC_GA generates three output files: 

• ISAAC.dat, containing a truncated version of ISAAC'S input data 
file that can be read-in and run as-is by the single-squad version 
of ISAAC, ISAACJSQ 

• GA_BEST.dat, containing a running record of all chromosomes 
(and corresponding mission fitnesses) of the "best" personalities 
that were found during the evolution 

• GA_STAT.dat, containing a statistical summary of the complete 
run (see below) 

GA_STAT.dat 

An annotated sample of the data fields appearing in GA_STAT.dat is 
shown in figure 72. 

The file opens with the start date, start time and a listing of the mission 
"weights" that will be used during the run to calculate the mission 
fitness. There is also a reminder of the termination condition that the 
user has selected for this run (see discussion under termination_code in 
Contents oflSAACjGA's Data Input File: GA_DATA). This is all written to 
GA_STAT.dat prior to starting the actual run. Once the run begins, and 
at the conclusion of each generation (see pseudo-code in ISAAC_GA's 
GA Recipe above), the program continually updates this file with a 
summary of how well the evolution is proceeding. This summary 
consists of the generation number last completed, best and worst 
mission fitnesses found thus far (including all previous generations), 
best and worst mission fitnesses found during the immediately 
preceding generation, and the average fitness of the current population 
(+/- standard deviation). 

Once the run is completed (whether automatically, by completing a full 
sweep through all user-requested generations or interactively, by a user 
by pressing the 'Q' (for Quit) key), the program records the parameter 
values defining the best overall red personality that was found during 
the run, along with its mission fitness value. The file concludes with a 
record of time, date and total elapsed time for the run. 
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Figure 72. Sample contents of the output file GA_STAT.dat 

: start date: 04/11/97 
: start it 1 meY :15 :52':25: 

; ■ Fi tnes 5: Paramete rs::.: 

tfme;:tp:goäT:; ;/■; ; iv,; 
red loss:, 
blue loss: 
;red:CM:to:bTue :flag:;i 

xblite;:CM: to
: :red ;:f 1 ag i: 

;:red nea r■'■: bl tie ;flag::';/: 
iblue: nea r -red 'flag id 
ired ; fr:atricide:;:■:; 

;: blue:: fratricide:   :: 

} Start Time/Data 

0.a0 
0.00 
0i00 
:0*00; 
mit: 
i:v00 
0:00 
;0-00;: 
0:00: 

Mission Fitness "Weights' i" 

; termination condition:    t_max=100 ; 

; generation      best 
: number 

.1 
2 
t: 

;::4':: 
:;"S':' 

6 
■::7!V 

::i0,i 

.  ; vätüe;?    Ssvälue/i B 
(overäIT) :{dveral1: j'1 

y-Mtzz.: :Smim::'3 ;y\:mm me^em^ 
::: mess^^mewd 
~mms: >;:mm&.M 

i:;:::;:0;065'::i:':.?:0i008::SS 
:?:0:.065' M   ISMS  
i:?0:083   :»!::0.000  
:s::;0vi27 ;:;:::::.0.000:: : 
;Ä 0:127.;;: *K 0.000 ;:;.;:■; 

:.Wbrst ;     beste;: K : worst    .average ■_■■■. ■ ;äye;:-H- staridard:i lave .-^standard:: ■■: standard 
value: 
(gen) 
0,026 
0,048 
:0.055: 
0.058 : 
0.065 
:0;052 
0:083 
;0.127 
E0:i05;: 

: vaiue 
: :(gert):: 
: .0:000 
:-:0i000 : 
:::::0;000 :; 
S0.000 ; 

:;:;0v000:: 
::;0.000 
K0.000 
::: 0.000 : 

fitness : 
:(gen) 

: 0:01s 
2.031 
.0.035: 

: :0:J028 
::::0:i037: 

: 0.036. 
:: 0.043: 

0.041::: 
: 0.051 

: 0ii27 : : 0^000      0.110      0.000      0.063: 

: d6viatiOn;: 

: 0:027': 
:0:045: 
0:051:: 
0:042 

: 0.050 
: 0.052 
40*063;: 
::0i059:: 

:0:078: 
0.095:. 

; deviation 

:::0:009; ■-.;.: 
:  .: 0.017. 
::::0v0i8 : :: 

::0:013 :> 
:0:024 ::: 
0.020    J 

:, 0:022   :: 
: 0.024:   : 

:: ''M^BZi':^ 
::0:032 

: deviation 

Simulation completed 

: "Bestf pe rsona 1 ity:: "W:;: 

S-range 
F-range 

:; C-^rarige: 
l-vitiila ':;';>. 
: :w2ia ;■' ;•; 
;.w3_.a;;;:;:;:: 

::.w4Sa': ;...;■; 
:W5va:;.:;:: 

::;v*Ö;:::;::::; 
w2_i 

:*3ii .:;;':;: 
w4_i 
w5_i 
w6_i 

-ADV^a:.:: 
::::CLS_j ™?i 

CBTia    : 
ÄDvii::! 
CLS_i 
CBTii    : 
R_R;a ?:: 
R_BL>; •:.: 
R_RG_a 
R_R_i 
R_B_i 
R_RG_i 

:=ia:;:---- 
:=:::4 ::::■::: 
:= 9 
:=;:20;900;::: 
:=:-8:300::::: 
;= 7.000 :.:: 
:= -23.500 : 
=: -42.300 : 
=21.600 
~  -9.700 
= 67.000 
= 41:400: 
:= -50:600; 

= -68.300 
=54.000 
= 7    : 
= :49::  :     : : 
= 30 
=;:.iz?".:,:::v'.; 

= 23 
-¥48;::;::':':''-::;: :=:0i:00;  ::: 
=:0:00 
= 0.00    ':-i 
= 0i00:   ::: 
=  0:00:: 
= 0.00 

summary of best,worst and average 
mission fitness for each generation 

0.009.::: .-:■;:: 
0.014             :: 
0:016:: 

:0:015 :   ::: 
:0i013:: 
0.016::::: 

0; 017: ■;:;■" 
0.027 

Parameters defining the "best" overall personality 

Best fitness=0.1934 : 

start date: 04/12/97 
start time: 22:00:36 
elapsed time: 108491 seconds 

Mission fitness of "best" personality 

;■>   >4-3--—   End Time/Data and Elapsed time for run 
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Sample Graphics Display 

Once the user has selected the name of all input and output data files 
(see figure 70), ISAAC_GA runs through its initialization routine and 
displays the main graphics page. 

A sample graphics page is shown in figure 73. Note that this figure 
assumes that the hot-keys 'B' (for Battle-Space), 'C (for Chromosome) 
and 'F' (for Fitness) have all been pressed (see "Hot-Key" Menu below). 
The display is broken up into six separate regions: 

• A banner-display region, located at the top of the display and 
containing a large bold font, which identifies the program and 
release version, and the generation that is currently being 
processed. 

• A text-based fitness-summary region, located directly beneath the 
banner-display region, which provides an up-to-date statistical 
summary of the genetic evolution (see below). 

• A battlefield region, located near the bottom center of the 
display, which contains the battlefield view of what the current 
red personality is actually doing. 

• A fitness-parameters region, appearing to the left of the 
batdefield, which contains a reminder of what mission fitness 
measure is being used for this run (see Mission Objective). 

• A personality region, appearing to the right of the battlefield, 
which contains parameters defining the current and overall best 
red ISAACA personality. 

• A "hot-key" menu region, appearing at the bottom of the display, 
which contains a short menu of "hot keys" that the user can use 
to interrupt a run at any time to perform a variety of functions 
(see below). 

Fitness Summary 

The fitness-summary region, located directiy beneath the 
banner-display region (see figure 73), consists of three columns of 
information that provides an up-to-date statistical summary of the 
genetic evolution. 

The first (or left-most) column contains, from top to bottom, the 
number of the personality P (i.e., or chromosome) that the program is 
currendy processing (expressed as a fraction of the total number of 
personalities in the genetic pool, P/Pmta), followed by the current initial 
condition C (expressed as a fraction of the total number of initial 
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conditions that the program will average the fitness value over, C/ Ctotal), 
followed by the current time step t of the sample that is being run for 
the C* initial condition for the P** personality (expressed as a fraction of 
the maximal allotted time for this run, t/t^). 

The second (or middle) column contains, from top to bottom, the 
value of the fitness of the (n-l)st personality, where the nth personality is 
the one currently being run (the value P/Ploai appearing at the top of 
the left-most column), the fitness of the "best" personality of the 
immediately preceding generation, and the fitness of the "worst" 
personality of the immediately preceding generation. 

The third (or right-most) column contains, from top to bottom, the 
average fitness value of the preceding generation, the fitness of the 
overall "best" personality that has been found thus far (up to and 
including the immediately preceding generation), and the fitness of the 
"worst" personality thus far (up to and including the immediately 
preceding generation). 

"Hot-Key" Menu 

The colored words at the bottom of the battlefield comprise a short 
menu of (black-colored) "hot keys" that the user can use to interrupt a 
run at any time to perform a specific function. There are five functions, 
accessed by the following keys (and defined according to the order in 
which they appear, left to right, on screen): 

• "B" (for Battle-Space): toggles the graphics display of the 
notional battlefield. Note that such a display is time-wise 
somewhat costly (slowing down apparent computation speed 
about 40%). Because speed is of the essence in genetic algorithm 
evolutions (see below), this option should be used sparingly to 
obtain glimpses of how a particular personality is doing. 

• "C" (for Chromosome): toggles the display of the parameter 
values defining the current and best personality on the 
right-hand-side of the display. 

. • "F" (for Fitness): toggles the display of the mission objectives 
defining fitness for this run, along with a reminder of how each 
sample during this run is to be terminated. 

• "Q" (for Quit): closes all output data files (saving intermediate 
results) and quits the program. 

• "S" (for Store Current Personality): stores the parameters 
defining the red personality that is currently being processed to a 
data file that can then be read-in and run as-is by the single-squad 
version of ISAAC'S core engine (i.e., ISAAC_SQ). In practice, 
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one "sees" an interesting behavior taking place on the notional 
battlefield (having accessed the graphical display of the 
battlefield by first pressing the "B" hot-key; see above) and then 
presses the "S" hot-key to record the personality that is 
responsible for that behavior. 
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Sample Runs 

In this section we present a few illustrative sample runs using the 
genetic algorithm front-end to ISAAC'S core engine. 

Typical Run-Times 

In order to give the reader an idea of how much processing time a GA 
run requires (so that the values of pertinent variables can be adjusted 
according to available hardware - and patience!), consider a "typical" 
scenario in which 50 red and 50 blue ISAACAs engage in notional 
battle on an 80-by-80 battlefield. If the genetic "pool" is populated with 
50 personalities and the program is asked to average over 25 initial 
conditions, typical run times on a 166 MHz Pentium computer average 
about 5 - 6 hrsfor 50 generations. Keep in mind, also, that these values 
represent fairly small scenarios, and are used here for illustrative 
purposes only. Research caliber runs require 100 or more personalities, 
50 - 100 initial conditions to average over and larger force sizes (~100 
or more per side). Such scenarios currently take well over 24 hrs to run 
(or to reach a satisfactory "saturation" level; see below) on a 
Pentium-class computer. A major programming focus for future 
versions of the genetic algorithm evolver will be to improve the 
required run times. 

Typical Learning Curves 

Figure 74 shows a typical learning curve for scenarios such as the one 
outlined above. Recall that mission fitness is a number between zero 
and one; numbers close to zero representing "low fitness" (according to 
the specific mission objective selected for a given run), and numbers 
close to one representing "high fitness." The bars in figure 74 represent 
the lower and upper bounds of mission fitness for a given generation, as 
defined by the absolute deviation from the fitness average. 

Figure 74. Typical GA learning curve 

to 

2  -2 

20 30 

Generation 
40 50 
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While learning curves will, of course, be different for different runs, 
some basic features are common to most curves. For example, because 
all runs begin with a random population of personalities, the initial 
gene pool tends to be relatively poor at performing whatever mission 
has been specified for a given run. The mission fitness at t = 1 will 
therefore be typically low. As the GA sorts the personalities according to 
their fitness values, and evolves this pool, the mission fitness will 
generally rise; fairly quickly at first, then eventually saturating at a value 
that represents the effective fitness maximum for a given mission 
objective. Since not all objectives are equally as amenable to a GA 
"solution" - in fact, some may not be "solvable" at all given the 
parameter space available to the GA - the value of the mission fitness at 
which any given curve saturates may not be as close to the value one as 
the user a-frriori desires. The learning curve shown in figure 74 saturates 
near/~ .5 at t ~14, which is a fairly typical characteristic saturation time 
for scenarios with 50 ISAACAs per side and a gene pool consisting of 50 
personalities. 

Figures 76 through 79 provide color "snapshots" of several sample GA 
runs using ISAAC_GA. Table 11 also gives short descriptions. All of 
these runs can be played back in their entirety by using the stand-alone 
"play-back" program ISAAC_SQ (see table 4). 

Table 11. ISAAC output files corresponding to the sample GA runs 
shown in figures 76 through 79 

Sample    Figure    ISAAC output file1 Brief Description 
GARun  

1 76 AWAY_l.out        Red's mission: keep blue away as far from red flag 
as possible for t=100 steps, "best personality" 

AWAY_2.out        Red's mission: same as in AWAY_l.out; 
2nd "best personality" 

AWAY_3-out        Red's mission: same as in AWAY_l.out; 
Blue is more aggressive; red uses different 
"tactic" 

AWAY_BAD.out     Red's mission: same as in AWAY_l.out; 
Early "bad" personality 

2 77 GOAL_2.out       Red's mission: get to blue flag and minimise red 
casualties; all red survive but few red get to 
blue flag (i.e., relatively low fitness) 

77 GOAL_4.out       Red's mission: same as in GOAL_2.out; 
92% red survive and almost all red get to blue 
flag (i.e., high fitness) 

78 GOAL_6.out       Red's mission: same as in GOAL_2.,out; 
Red's tactic is to "weaken center then go around 
blue defenses " 

79 GOAL_l.out       Red's mission: same as in GOAL_2.,out; 
Red's tactic is to "spread and weaken, then surge 

 through the thinned blue defenses " 
Output files are provided on the accompanying disk. 

193 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

Sample GA Run #1 

Figure 76 shows a few snapshots taken from a play-back of the files 
AWAY_l.out, AWAY_2.out, AWAY_3.out and AWAY_BAD.out (using 
ISAAC_SQ). The first three files represent the "best" GA-evolved red 
personalities for performing the following mission: "Keep blue ISAACAs 
as far away from the red flag as possible, for as long as possible (up to a 
maximum 100 iteration steps)." This means that the mission fitness / will 
be close to its maximal value one only if red is able to keep all blue 
ISAACAs pinned near their own flag (at a point farthest from the red 
flag) for the entire duration of the run, and / will be near its minimal 
value zero if red allows blue ISAACAs to advance completely unhindered 
toward the red flag. For comparison, the last file, AWAY_BAD.out, 
contains an early "bad" red-personality that performs this particular 
mission poorly. Combat unfolds on a 40-by-40 notional battlefield, with 
35 ISAACAs per side. The GA is run using a "pool" of 50 red 
personalities for 50 generations, and each personality is averaged over 
25 initial spatial dispositions. Figure 75 shows a fragment of 
ISAAC_GA's input data file for this run (see Contents oflSAACjGA's Data 
Input File: GA_DATA). 

Figure 75. Fragment of GA_DATA.dat input data file for Run #1 

* ■ '    ■■ 

* GA parameters 
:*■■ 

************************************* 
num_generations 50 
num_initia'l_vConds 25 
max_time_to>goa1 : 100 

; penalty_;power 2 
best^personalities_to_file? 1 

::;niir)_jdist_gerie:s_flag 0: 
initia1_condition_genes_flag 0 
************************************* 

■■* 

: * ;:   :-:sp en a ity.:: weights (1-100) '.'V 
:::!*;' • 
:************************************* 
i;:::wi£ti'meüt'oJigQa1-.:" I',-.!- 0   : 

w2_/riend1y_loss 0 
w3^enemy_loss 0 
w4^red_to_blue_surviva1_ratio 0 

:::w5^riendTy£GM^b^nömy_flag::: 0 
: w5^eneiiiyl;eM^;o«f:r:iendTy_flag: :; 10 ■ 

w7_friendly_near_enemy_f1ag 0 
w8_enemy_near_friendTy_flag 10 
;w9_red_fratricide_hits 0 
wl0_bTue_fratricide_hits 0 
************************************* 
* ; 

termination parameters 
::* 
************************************* 

■ termination_cbde? "< K4      : ; 
::fl;ag£cöhtafnment£r;aTige''-^-:U:4^ :   12 
containment_number 10 

; red_CM_to_BF_frac ;5■-■■■...'■ 
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The best red personality that the GA was able to find for this mission 
appears in AWAY_l.out. The snapshots of this run (taken at times t=25, 
50 and 100), show that red is very successful at keeping blue forces away 
from its own flag. In fact, the closest that red permits blue ISAACAs 
from approaching the red flag - during the entire allotted run time of 
100 iteration steps - is some point roughly near midfield. In words, the 
"tactic" here seems to be - from red's perspective - "fight all enemy 
ISAACAs in sight while moving toward the enemy flag slowly enough to compel 
the enemy to keep following." Note that this tactic is fairly robust, in the 
sense that if the battle is initialized with a different spatial disposition of 
red and blue forces (while keeping all personality parameters fixed), 
red would perform this particular mission about as well.26 

The second best red personality, AWAY_2.out (whose snapshots are taken 
at times t=25, 50 and 90) shows a slightiy less successful, but innovative, 
"tactic." Here, just as in AWAY_l.out, red ISAACAs initially move away 
from their own goal to meet the advancing blue forces (see time = 25). 
Once combat ensues, however, any red ISAACAs that find themselves 
locally isolated "double back" toward the red flag to regroup with other 
reds and thereby form an impromptu secondary defense against 
possible blue leakers. Because a few blue ISAACAs manage to fight their 
way near the red flag at later times (see snapshot for time = 90), the 
overall tactic is not as successful as the one used in AWAY_l.out. 

The snapshots for AWAY_3.out show the tactic used by the best red 
personality found by the GA after the blue force is made a bit more 
aggressive (by increasing blue's personality weight for moving toward red 
- i.e., weight components wblue2 and wbIue4; see ISAACA Personalities - 
by 50%). Red's new tactic is completely different, and in fact proves to 
be even more successful (from a mission fitness point of view) than the 
tactics used in the previous two examples. Here, red quickly "spreads 
out" to cover as much territory as possible and "strikes" the enemy as 
soon as the blue ISAACAs come within view. As their territorial 
coverage is thinned either through attrition or movement toward the 
blue flag, other red ISAACAs (namely, those previously positioned near 
the periphery of the battlefield) move inward to fill any voids. This 
tactic succeeds in not only preventing any blue ISAACAs from reaching 
the red flag, but manages to push most of the surviving blue force back 
toward its own flag! As the case with previous tactics, this tactic is also 
fairly robust, and is not a strong function of the initial spatial 
disposition of red and blue forces. 

The last example in figure 76, AWAY_BAD.out, shows a few snapshots 
from an early "bad" red personality. The mission and blue personality 
are the same as in AWAY_3.out. Initially, red appears to behave as it 
does in AWAY_3.out, as red ISAACAs quickly disperse outward to cover 
a large area. But, because at this early junction in the "evolution," the 

26     The reader can verify this fact by running AWAY_l.dat using ISAAC_SQ, and by 
randomizing the initial conditions by pressing the "N" (i.e. raNdom) hot-key. 
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GA has not yet had the time to "fine tune" all of red's genes, red is in 
this instance unable to prevent blue ISAACAs from penetrating deeply 
into red territory. 

Sample GA Run #2 

Figures 77 through 79 show a few GA-evolved "tactics" for the following 
mission: "Get to the blue flag as quickly as possible while minimizing red 
casualties." Except for the values appearing in the penalty weights section 
of ISAAC_GA.dat, the GA's input data file for this sample run is the 
same as the one shown in figure 75. The penalty weights section must be 
amended so that all weights are zero except for wl and wn: 

w1_time_to_goal 10 
w7_friendly_near_enemy_flag  10 

As in the previous example, the GA is run using a "pool" of 50 red 
personalities for 50 generations, and each personality is averaged over 
25 initial spatial dispositions. 

Figure 77 shows snapshots of the evolution of two early red "attack 
tactics." Red's first tactic (stored in the play-back file GOAL_2.out) is to 
station its forces out of reach of blue's fire power, and then - after 
creating an "opening" on blue's right flank by slowly drawing out a few 
enemy ISAACAs - to send a small section of reds toward and around 
that opening. While, in the end, all reds survive, the overall mission has 
not been a particularly successful one (from the mission fitness point of 
view) because only a relatively few reds have actually made it to the blue 
flag. 

Red's second tactic (stored in the play-back file GOAL_4.out, and 
illustrated by the sequence of snapshots appearing at the bottom of 
figure 77) proves to be more successful. Here, red again first advances 
toward blue's defensive position, maintaining a station at a far enough 
range so as to avoid blue's fire power (see snapshot for time = 25). 
Then, after a relatively long period of time during which there is much 
"undulating" (or random "posturing") on both sides, red exploits a 
perceived weakening in blue's forces (near the center region of blue's 
defensive position) and quickly strikes, sending most of its force through 
the blue defenses and toward the enemy flag. As blue ISAACAs 
counterattack and surround the penetrating red ISAACAs, a second 
squad of reds penetrates through a newly created "hole" in blue's 
defense. The result, from red's point of view, is that 92% of the initial 
force has successfully penetrated through to the blue flag. 

Figure 78 shows snapshots of a third red tactic for this same mission. 
The run can also be played back in its entirety by using ISAAC_SQ (i.e., 
the single-squad version of ISAAC; see table 4) to "play back" the file 
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GOAL_6.out. The tactic exploits (or sacrifices!) a few red ISAACAs at the 
front of the advancing red force. The snapshots for times 15 and 20 
show that as most of the force splits into two groups and moves off 
toward blue's left and right flanks, a few red ISAACAs (those that are 
originally near the center of the split) proceed to move forward and 
penetrate blue's defense. By enticing blue to counterattack red's 
penetration (by sending forces toward the middle), red effectively 
dilutes blue's strength along the outer edges of its defensive station. 
This, in turn, creates "openings" on both sides of blue's defense 
through which the two separate groups into which red had earlier split 
can now move virtually unopposed. The snapshot for time 90 shows that 
red has successfully penetrated through to the blue flag well before the 
maximum allotted time for this run has expired (tmax =100). 

Snapshots of the fourth, and final, sample red tactic for this same 
mission is shown in figure 79. This run can be viewed by using 
ISAAC_SQ to "play back" the file GOAL_l.out. Red's tactic here is 
again, as in the previous example, to exploit a few red ISAACAs at the 
front of the advancing red force. This time, however, red does not need 
to sacrifice these ISAACAs. Instead, red uses them to split apart blue's 
forces in order to temporarily "weaken" the center region of blue's 
defense. As soon as this center region is sufficiently weakened, red 
quickly penetrates through to the blue flag. What is surprising is the 
robustness of red's personality with respect to this tactic. Red is more 
often than not able to successfully employ the same general tactic 
against an arbitrary blue initial force disposition. 

What is most surprising about many of these runs is that the red force 
appears to task different ISAACAs with different missions, despite the fact that 
each red ISAACA is endowed with exactly the same personality! Thus, in figure 
79, the higher-level tactic "use the two forward positioned ISAACAs to 
weaken the enemy's center" emerges out of the collective interactions of 
the same low-level decision rules: an apparent centralized order 
induced by decentralized local dynamics. 
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Figure 76.  Snapshot views of GA-evolved personalities for scenario GA_1 
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Figure 77.   Snapshot views of GA-evolved personalities for scenario GA_2 
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Figure 78.  Snapshot views of GA-evolved personalities for scenario GA_2 
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Figure 79.  Snapshot views of GA-evolved personalities for scenario GA_2 
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Future Enhancements to ISAAC 
Table 1 (see page 8) lists nine generic properties of complex adaptive 
systems and briefly summarizes their relevance to land combat. While 
the details of the given comparison can be debated, as can the actual 
characteristics that the table purports are shared by most complex 
adaptive systems, the fact that it makes any sense at all to compare some 
of the more obvious properties of land combat with those of complex 
systems is in itself significant. It suggests that, in principle, land combat 
ought to be amenable to precisely the same methodological course of 
study as any other complex adaptive system, such as the stock market, a 
natural ecology, or the human brain. 

The obvious first step to take in such a course of study is to develop a 
complex systems theoretic model of land combat "from the ground up" 
(no pun intended!), making full use of the modeling and simulation 
tools that have been developed by the complex systems theory 
community in recent years to understand the behaviors of models of 
many real complex adaptive systems. This means, in particular, that a 
description of land combat must be developed that fundamentally 
derives not from the solution of a set of Lanchester equations (though, 
depending on the problem, this may be an entirely appropriate course 
to take), but from a context in which the dynamics of combat are driven 
by (1) a medium to large number of semi-autonomous agents, (2) 
agents that are able to adapt — intelligently and in real-time — to 
changing conditions, and (3) agents that filter, assimilate, and react 
only to local information. 

The version of ISAAC described in this paper represents a tentative first 
step toward developing an inherently complex systems theoretic model 
of land combat, and is motivated by a desire to extend the largely 
conceptual links between complex systems theory and land combat, as 
outlined in table 1, to forge a set of practical connections as well. 

Assuming land combat can be described as a complex adaptive system, 
the second — and ultimately most important — step is to determine the 
universal high-level emergent behaviors that result from such a 
description. The ultimate goal for ISAAC is for it to form the backbone 
of a general purpose complex systems theoretic analyst's toolbox for 
identifying, exploring, and possibly exploiting emergent collective 
patterns of behavior on the battlefield. 

Future versions of ISAAC will include many enhancements to the "core 
engine" described in this paper. These enhancements will both provide 
a greater sense of realism and enrich the overall battlefield 
environment. There are five general categories of future 
enhancements: 
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• Basic enhancements to ISAAC'S "Core Engine" 

• Memory and learning 

• Nested ISAAC dynamics 

• Data collection enhancements 

• Enhancements to GA evolution 

Basic Enhancements to the "Core Engine" 

Basic enhancements will include (but not be limited to): 

• More realistic ISAACA state-space 

• Enhanced offensive and defensive capabilities 

• An enhanced command and control structure 

• Enhanced Personality "Value-Systems" 

• Greater "Depth" to, and Variety of, Local Moves 

• Added environmental realism 

• Enhanced Combat Adjudication. 

More Realistic ISAACA State-Space 

ISAACAs currently exist in one of only three possible states: alive, 
injured, and dead. Each ISAACA can therefore be encoded as a simple 
scalar element: equal to 2, say, if alive, equal to 1 if injured and equal to 
0 if no longer "playing." In future versions of ISAAC, the inner 
state-space of each ISAACA will be enhanced by several additional 
factors, and will thus effectively be described as a vector quantity. These 
enhancements will include: 

• Health 

• Morale 

• Combat quality 

• Experience 

• Movement vectors 

• Meta-personality templates 
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An ISAACA's health at time t will reflect its overall combat-readiness. 
Morale - meaning "a spirit, as of dedication to a common goal, that 
unites a group"27 - will be a basic measure of unit cohesion and general 
"fighting spirit." It will increase with (perceived) local combat "success" 
and decrease with increasing damage (to a single unit and/or a unit's 
squad). 

Combat quality will be a general measure of how "well" a given ISAACA 
performs its own mission, where "well" is measured relative to an 
ISAACAs maximum combat characteristics. Higher combat quality will 
assure a higher offensive "mission success" rate. For example, firepower 
and maneuverability distributions might be weighted more towards the 
higher end, say, using tail-end weighted beta-distributions. Combat 
quality will increase with an ISAACA's experience, with higher quality 
assuring a lesser degradation of morale under adverse conditions. 

Since, in the current version of ISAAC, ISAACAs respond only to the 
static configuration of nearby ISAACAs, direction and speed are 
completely ignored. Future versions of ISAAC that incorporate a local 
memory (see below) will also encode an ISAACA's speed and direction 
in a movement vector. 

Factors such as health, morale, combat quality, and experience can all 
be used to define generalized ISAACA "profiles," or meta-personality 
rule-templates, for associating given personality types with given local 
contexts. In the current version of ISAAC, each ISAACA is endowed 
with a single fixed personality (as defined by its personality weight 
vector) and, perhaps, a few additional fixed constraints (such as advance, 
cluster, and combat thresholds). In future versions, ISAACAs will be 
endowed with context-dependent meta-personality templates that specify what 
fixed personalities (and what additional constraints) will be used at 
what time. 

An increased state-space also allows for individual ISAACAs to be 
ranked according to their defensive vulnerability (see next subsection). 

Enhanced Offensive and Defensive Capabilities 

In the current version of ISAAC, ISAACAs have a single notional offensive 
weapon (characterized by a single-shot probability and a constraint on 
the maximum number of enemies that can be targeted at one time) and 
a single defensive capability (characterized by the "number of hits" 
required to degrade a state from alive to injured or from injured to 
"killed"). Future versions of ISAACAs will include a wider range of both 
offensive and defensive capabilities, including: 

27     American Heritage Dictionary, Third Edition,  CD-ROM version  3.6,  Houghton 
Mifflin Company, 1994. 
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• a mix both short- and long-range weapons, with appropriate 
context-sensitive rules (both local and command-related) 
prescribing their use 

• weapon store, thus removing the unrealistic current infinite store 
of required weapons and ammunition 

• aim accuracy 

• probability of kill, p^,,, that is different from single-shot "hit" probability, 
p^, and will depend on individual targeted enemy units 

• terrain camouflage, wherein terrain effects are included in both 
defensive posturing strategies and offensive capability (see 
below) 

• weapon-specific vulnerability.. 

ISAAC will also include some form of reinforcement, wherein the user 
(i.e., Supreme Commander) will define the manner in which injured 
and/or killed ISAACAs will be replaced with "fresh" (i.e., alive) 
combatants. 

An Enhanced Command and Control Structure 

As with almost all other components of the current version of ISAAC, 
the rules defining command and control are very crude and not very 
realistic. On the local command level, for example, these rules consist 
essentially of providing a common reference point for clustering and 
issuing local movement vectors to subordinate ISAACAs. On the global 
command level, these rules consist of vectoring the movement of local 
commanders toward the enemy flag by using certain global information 
(that is not directly accessible by the local commanders themselves) and 
prescribing the manner in which local commanders may "help" other 
local commanders. These rules are currenüy very ad hoc, and represent 
but one way among many to accomplish the same basic tasks. 

An enhanced, more realistic command and control rule structure must 
better respect the self-similar manner in which decisions are made on 
each level of the hierarchy. Namely, the action of each decision-maker 
(whether it is an ISAACA, a local commander, global commander or 
the supreme commander) is predicated on that decision-maker 
answering exactly the same series of fundamental questions: 

• Question 1: What is my current goal (which may depend on 
context and therefore change as the batde unfolds)? 

• Question 2: What resources are at my disposal? 
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• Question 3: How do I best make use of my available resources to 
satisfy my current goal? 

For example, an individual ISAACA, which represents the simplest 
agent populating the ISAACian landscape, answers this series of 
questions as follows: 

• ISAACA. Answer 1: to get to the blue flag (as an example) 

• ISAACA Answer 2: my only resource is my ability to move (either 
a distance 1 or 2, depending on my movement range, or to stay 
in my current position) 

• ISAACA Answer 3: I must minimize my local penalty function 
(which is defined as a weighted-sum of my current and projected 
distances to nearby ISAACAs and my own and enemy flags). 

Similarly, a local commander currently answers the same series of 
questions as follows: 

• LC Answer 1: to get to the blue flag (as an example) 

• LC Answer 2: the individual ISAACAs that make up my squad 

• LC Answer 3: I order all of my subordinate ISAACAs to move 
toward the center of that "patch" in my local command area that 
minimizes my local command penalty function 

It is clear that the local commander's answer #3 is, at best, only a "first 
approximation" of the solution to what is, in reality, a very complicated 
optimization problem. In the current version of ISAAC, each LC orders 
all of its subordinate ISAACAs to move toward the same point. While an 
optimization, of sorts, is performed, it consists only of determining what 
patch in the LC's command area to send all of the LCs subordinates to. 
This is done purely for expediency, and does at all represent the "best" 
approach. 

A more realistic - albeit more time-consuming - approach is for the LC 
to issue individually tailored movement orders to each of its subordinates, each 
order being deduced by solving a local optimization problem. That is to 
say, the LC's local decision problem really consists of finding the "best" 
possible combination of moves for each of its subordinates, given the 
overall state (consisting of both friendly and enemy ISAACAs) within its 
local command area. Ideally, such a decision must also be based on the 
LC's prediction of future states, making LC decisions very chess-like, at 
least locally (see Nested ISAAC Dynamics). 
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Similarly, a more realistic decision problem that must be solved by a 
global commander is to find the "best" possible combination of moves 
(including criteria, or "templates" for LC-issued orders to their own 
subordinates) for each of its subordinate local commanders, given the 
overall (perceived) state of the batdefield. 

In summary, future versions of ISAAC will include a more robust 
command and control dynamical structure that consists of level-specific 
"decisions" based on solving local optimization problems. 

Enhanced Personality "Value-Systems" 

The early version of ISAAC described in this paper introduces the 
potentially powerful idea of basing the local decision-making process on 
individual personalities. Personalities, however, are thus far defined fairly 
crudely, and currently consist solely of assigning relative weights to the 
desire to move closer toward alive or injured red and blue ISAACAs and 
either of the two "flags." 

More sophisticated personal "value-systems" can be imagined. For 
example, provision might be made to allow individual ISAACAs to more 
explicitiy weigh tradeoffs between risk versus potential (i.e., perceived) 
payoff. The personality weight vector can also be generalized to allow 
for user specification of different sets of personality "types." For 
example, a certain number of ISAACAs on a given side can be declared 
"defenders," and another "attackers." 

In the current version of ISAAC, each ISAACA is endowed with at most 
a single "goal," namely a propensity to move toward or away from the 
enemy flag (as defined by an appropriate component of its personality 
weight vector). If the local command option is enabled, individual 
ISAACAs may also be ordered by their local commander to give some 
weight to moving towards temporarily issued "local goals." In future 
versions of ISAAC, individual ISAACAs will act according to unique, but 
time and context dependent goals. In particular, ISAACAs will be able to 
alter their own personalities as a function of both experience and 
surrounding conditions. For example, local goals can depend on an 
ISAACA's position within the battlefield; ISAACAs near their own flag 
may assume a more "defensive" role (than that defined by their default 
personality) while an ISAACA's "offensive" drive may increase as it 
approaches the enemy flag. 

Generalized Personality Matrix 

Currentiy, the most general ISAACA personality - defined by weight 
vector w - is a function only of state (i.e., either alive or injured) and 
squad (if there is more than one). That is, each ISAACA can be assigned 
two different weight vectors (and, thus, two different personalities) - 
one for when it is in the alive state and one for when it is injured - and 
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these two personalities can be different for ISAACAs belonging to 
different squads. All ISAACAs belonging to the same squad, however, 
are assigned exacdy the same weight vector. Moreover, in the case of a 
multi-squad force, the actual propensities for moving toward or away 
from other ISAACAs (as defined by w) do not themselves depend on 
the squad that those other ISAACAs belong to. In other words, 
ISAACAs are currently unable to distinguish among ISAACAs that 
belong to different squads. Communication is also "blind" to squad 
labels in this sense. 

In future versions of ISAAC, personality weight vectors will be 
generalized in two ways: 

• w will be a function of the complete vector quantity that 
characterizes an ISAACAs inner-state space (i.e., health, morale, 
experience, etc; see More Realistic ISAACA State Space). This 
generalization will greatly enrich the dynamical range of 
personality-driven responses that an individual ISAACA can 
make. 

• The actual propensities for moving toward or away from other 
ISAACAs (as defined by w for ISAACA X, say) will themselves 
depend on what X perceives to be the properties of those other 
ISAACAs. In other words, the way in which X responds to an 
ISAACA Y (or incorporates Y into its local penalty calculation) 
will depend on the properties of Y that ISAACA X chooses to 
associate with Y (or that X senses are possessed by Y). 

Hostility Rings 

In the current version of ISAAC, ISAACAs treat all other ISAACAs 
within their sensor range equally, except for assigning different relative 
weights to ISAACAs of different types (alive friendlies, alive enemies, 
etc.). In future versions of ISAAC, ISAACAs will also be surrounded by 
concentric "hostility rings" (or annuli) defining the relative degree of 
importance assigned to neighboring ISAACAs. For example, a set of 
enemy ISAACAs Sj that are closer to ISAACA X than another set S2 may 
be assigned a higher weight (or priority). (See division of global 
command sectors into hostility rings in GC Command of Autonomous LC 
Movement.) 

Recall sample run #10 (see figure 45), which illustrates the effect of 
increasing red's sensor range relative to blue's. In discussing this run, we 
speculated that as side X is forced to assimilate more and more 
information (with increasing sensor range), there inevitably comes a 
point at which X's overall fighting ability is effectively curtailed because 
X's available resources are spread too thinly. This is assuming, of 
course, that X's resources and/or tactics (i.e., "personality") remain 
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fixed. An obvious question to ask regarding this example, is "How ought 
X to adapt its personality in order to perform (its mission) at least as 
well using increased sensor capability?" Part of the solution might 
depend on each ISAACA having the ability to prioritize all of the 
information contained within its sensor field. A genetic algorithm can 
then be coupled with this extended local dynamical parameter space to 
search for "optimal" local prioritization schemes. 

Another possibility is to pattern a more sophisticated internal 
value-system after Smith's "Calculus of Ethics" [30]. 

Greater "Depth" to, and Variety of, Local Moves 

In the current version of ISAAC, ISAACAs are, at any time t, 
constrained to move to one of either 8 (if the movement range rM = 1) 
or 24 (if the movement range rM = 2) nearest neighbor sites. In future 
versions, ISAACAs will not only be allowed to move over greater 
distances (thereby effectively adding a velocity parameter to the overall 
parameter specification list of a given ISAACA; see More Realistic 
ISAACA State Space), but will also be able to develop local tactics and 
strategies of projected sequences of moves (see Memory and Learning). 

For example, as the environment is enhanced to include various types 
of terrain and obstacles (see Added Environmental Realism), ISAACAs 
will be forced to weigh factors beyond the simple "proximity to enemy 
and friendly force" factor that is currently the sole determinant of its 
local penalty function. Local move decisions will, in future versions, 
require some form of rule-based "tactics" to dynamically integrate such 
factors as line-of-sight, the "passability" of a given terrain type, and 
degree of camouflage. 

Added Environmental Realism 

The addition of terrain and other obstacles to the environment 
simultaneously adds a layer of complexity to the kinds of local moves 
ISAACAs can take and increases the level of sophistication of local 
tactics and strategies. Different kinds of terrain will include... 

• flat/rough 

• road 

• forest 

• hill 

• river 

• minefields 
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• structure (bridges, storage, bunkers, etc.) 

Terrain will also be characterized by 

• altitude (which will affect line-of-sight) 

• movement (i.e., "passability") index, which will be a function of the 
kind of ISAACA occupying a given battlefield cell 

• camouflage (or "fog") index, which will affect visibility and/or 
identifiability) 

A simple way to implement a fog-index is to add two rule "templates": 
(1) Visibility Rule-Template = ISAAGAs located in, say, a forest cell Cforest, 
are made visible only to ISAACAs that are immediately adjacent to 
^forest» and (2) Defensive Enhancement Rule-Template = provide a specified 
fractional increase to the defensive strength of all ISAACAs within a cell 
of a given terrain type. 

Enhanced Combat Adjudication 

In the current version of ISAAC, combat is resolved in a very crude 
manner. Each ISAACA is given an opportunity to "fire" at any enemy 
ISAACA that is positioned within that ISAACA's fire range. If an 
ISAACA is shot by an enemy ISAACA (with a user-specified probability), 
its current state is degraded either from alive to injured or from injured 
to killed. In future versions of ISAAC, combat adjudication will be 
enhanced in at least two ways: 

1. The addition of more realistic lethality contours surrounding 
each ISAACA. For example, some ISAACAs may have a greater 
forward firepower or have a firepower that diminishes with 
range to target. 

2. The addition of selective power projection; i.e., the ability to tailor 
an engagement strategy to a local context (see below). 

The enhanced set of engagements strategies will include: 

• Direct ISAACA <-> ISAACA fire - in which ISAACA X "sees" an 
enemy Y (and vice-versa) and both engage in one-on-one 
combat. The outcome is determined probabilistically, as in the 
current version, but takes into account weapon strength, range, 
morale, defender's strength and visibility. 
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• Area fire - in which an ISAAC X "knows" or suspects that an 
enemy ISAACA Y is located within an area A (consisting of, say, 
an N-by-N array of battlefield "cells") and blindly fires at a 
random cell or cells in A. 

• Collective fire - in which a set of ISAACAs - X„X2, ..., Xn - 
coordinate their fire into a patch of enemy territory (an area of 
size A at range R). 

Targeting Strategies 

In the current version of ISAAC, each ISAACA individually decides to 
target a randomly selected set of enemy targets (up to the user-specified 
maximum number allowed) that are located within a fire range rF of 
their position. In future versions, all power projection and targeting 
strategies will be decided in a more "intelligent" fashion by 
incorporating information about enemy defenses, position, movement 
vectors, perceived health, morale, combat quality, and so on. 

Locally, ISAACAs will weigh such tradeoffs as targeting less capable but 
closer enemy units (that may therefore be more likely to be "hit") vice 
targeting more capable enemy units that are located farther away (and 
that may therefore be less likely to be "hit" if targeted). On a local 
command level, local commanders will coordinate fire among its 
subordinate ISAACAs by issuing targeting priorities and engagement 
strategies (direct, area, or collective; see above). 

Memory and Learning 

As is true of any complex adaptive system, land combat consists not just 
of mindless combatants following some prescribed set of rules, but of 
intelligent and adaptive combatants who, over time, can both learn from 
their past mistakes and modify the default rule set that they initially 
entered combat with. 

In the current version of ISAAC, however, ISAACAs are very limited in 
their ability to modify their default personalities. Their adaptability 
consists essentially of being able to slighüy alter their default 
personalities according to a set of local threshold constraints, measured 
with respect to a user-specified threshold range (see ISAACA 
Personalities). For example, while certain ISAACA's might have a 
personality that drives them to always move toward friendly ISAACAs 
(according to some positive relative weight), they might also be driven 
by an auxiliary constraint condition that effectively clamps that default 
positive weight to zero whenever they are surrounded by a threshold 
number of friendly forces. In this way, their weights — and therefore, 
their personalities — adapt to local contexts. 
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But this adaptation is clearly very basic. While weights may be either set 
to zero or have their sign flipped (from positive to negative or vice 
versa), their actual relative values never change. Instead — for 
maximum growth potential — ISAACAs need to be able to both 
adaptively change their entire personality structure and learn from their 
past experiences. 

One simple way to augment ISAAC'S current adaptability algorithm is to 
define meta-personalities that would, for example, either increase the 
relative weight for moving toward an enemy as the distance to enemy 
forces decreases (to define a class of "strongly aggressive" forces), or 
increase the relative disparity between moving toward an enemy and 
moving toward the enemy's goal as the distance to that goal decreases 
(to define a personality class that becomes more eager to attain the goal 
as it gets closer to it). (See discussion in More Realistic ISAACA 
State-Space). 

Another, more powerful way to make ISAACAs more flexible in 
adapting to their environment is to incorporate some form of memory. 

Memory 

ISAACAs currently have no memory. At each time step, they assimilate 
the information within their sensor's field-of-view and either choose to 
"do nothing" or move into some adjacent site. All previous moves are 
"forgotten," and no "anticipated" future moves (such as might be part of 
a projected series of moves, or strategy) affect their decision-making 
process. 

Future versions of ISAAC will include an ISAACA memory. Each 
ISAACA will be able to store, retrieve, and incorporate into its 
decision-making process a memory of a certain number of its most 
recent moves. Moreover, ISAACAs will be able to retrieve a certain 
number of past configurations within their sensor's field-of-view; i.e., the 
actual positions of all friendly and enemy ISAACAs within their sensor 
range. Memory of the past successes and failures of other ISAACAs, and 
those of the strategies of previous local and global commanders, will 
also be considered. 

A memory capability — particularly when coupled with a more 
expansive set of possible moves that ISAACAs will be allowed to select 
from on any given time step (see Greater "Depth" to, and Variety of, Local 
Moves above) — leads naturally to the development of tactics and 
strategies. For example, individual moves will no longer be defined (as 
they are now) solely in terms of a local penalty minimization, but will 
involve both (1) a minimization of projected penalty (wherein an ISAACA 
will select a move that is based, in part, on an anticipated sequence of 
moves, (m,,m2,...mn), and their consequences), and (2) a consideration 
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of the efficacy of past moves made in similar configurational contexts 
(see discussion below). 

NeuralrNetwork-Derrved Move Selection 

In the current version of ISAAC, move selection is based on a few 
simple local rules. These rules are "hard-wired" in at run time. They also 
make only a very limited use of the total information within an 
ISAACA's sensor range. In particular, an ISAACA does not explicitly 
take into account the exact disposition of forces in its field-of-view, 
basing its decision to move, instead, on only the absolute or relative 
numbers of nearby ISAACAs. A more powerful approach is to enable 
ISAACAs to make better use of all of the information that is locally 
accessible by them, which includes knowing force positions as well as force 
strength. A powerful tool with which this can be accomplished is the 
neural network (see pages 104-116 of [2]). 

Figure 80. Illustration of a neural-net assigned move m (at time t+1) 
given a local state S at time t 

■ ■ 
m 

■ 
State S at time t Neural net prescribes move m 

for time t+1 

The idea would be to teach an ISAACA (in either supervised or 
unsupervised fashion) to associate a particular move (= m) with a given 
overall local state (= 5). The local state includes the numbers and 
positions of all friendly and enemy forces. In later versions of ISAAC, 5 
will also include terrain and other obstacles. 

Reinforcement Learning 

Reinforcement learning is the problem that any autonomous adaptive 
agent faces when learning a strategy via trial-and-error interactions with 
its environment. There are two general strategies for attacking this 
problem [31]: (1) search through the space of all possible behaviors to 
find the one that performs "best" in a given environment (this is the 
approach taken by genetic algorithms); or (2) find a well-defined 
method of assigning credit to individual actions taken in response to 
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given states of the environment. The latter strategy, provided by 
reinforcement learning theory, involves a wide variety of techniques: 
greedy strategies, randomized techniques, adaptive heuristics, 
Q-learning, Bayesian reasoning techniques, and temporal-difference 
learning, among many others. 

In each case, the underlying idea is the same. An ISAACA is connected 
to its environment via its sensor (which feeds information to the ISAACA 
out to within a range rc) and action, which, in the general case, will 
involve strategies consisting of several projected moves. At each 
iteration step, an ISAACA receives input about the current state of its 
environment and chooses a particular move as output. Since this action 
obviously changes the state of the environment (of which each ISAACA 
is an integral part), one can imagine that — once a move is made — 
there is either an implicit or explicit reinforcement signal that is fed back 
to the ISAACA, telling it how "good" its move really was. For example, 
"Did it really get closer to enemy ISAACAs, as it wanted?" Or, "Did it 
mistakenly get farther and lose sight of some enemy forces?" An 
ISAACA ought to choose moves (and form strategies) — essentially, map 
actions to states (as depicted in figure 80) — that tend to maximize some 
long-term measure of reinforcement. 

Note that this is very different from, say, supervised neural-net learning, 
which involves teaching an agent to associate input and output pairs by 
learning a test set of "training facts." In reinforcement learning, an 
ISAACA may be given an immediate "reward" after making a move 
(thumbs up/thumbs down, or some other measure), but it is not told 
explicitly which move would have been the best one to take. The 
ISAACA must come up with an optimal strategy by itself, using only its 
experience. Its task (as well as the designer's) is made more difficult 
still, by the fact that the criteria for assigning an appropriate 
reinforcement signal for current or past actions is far from trivial. For 
example, it is generally difficult to decide which one move (or set of 
moves), out of a sequence of moves that ends in a high-payoff end-state, 
was actually the "best" one to take, and is therefore the move (or 
moves) to which the highest "reward" ought to be assigned.28 It is also 
not always clear what the "end-state" is, or how to long to wait to make 
an assignment. One class of techniques that is designed to deal with this 
problem is the so-called method of temporal differences [32]. This class 
takes its name from the fact that it consists essentially of adjusting the 
values of states according to differences between the immediate reward 
and the estimated value of the next state. 

A recent, and in many ways remarkable, application of reinforcement 
learning to game playing is Tesauro's temporal difference algorithm for 
backgammon [33]. Since backgammon has on the order of 1020 

possible states, it is impractical to use a brute-force search strategy. 

28     This general problem is known as the Credit-Assignment Problem, and is discussed by 
many authors. For a discussion, see [31]. 
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Tesauro's model (TD-Gammon), which also uses a backpropagation 
neural-net to aid the temporal difference learning algorithm, has 
learned to play backgammon so well that, at the time of this writing, it is 
considered to be one of the best "players" in the world. 

Current design plans for future versions of ISAAC include building 
some form of reinforcement learning techniques into each ISAACA's 
decision-making process. 

Nested ISAAC Dynamics 

Agents in a real complex adaptive system can be expected to behave 
and adapt according to some internal model that they have constructed 
for themselves of what they believe their environment is really like. In 
particular, field commanders base their command decisions, in part, on 
what their intelligence support tells them has happened thus far on the 
battlefield and what the enemy's current order-of-battle is, and, in part, 
on their own best intuition of how events will unfold in the future. 

Figure 81. A schematic representation of "nesting" in ISAAC 

The "real" battlefield in ISAAC 

D 
D 

D 

Field Commander (A)  D 

'            \ ' s — — "---' " -' 

D 
D 

D 
D 

■ D 

A's (imperfect) internal representation of the battlefield 

Sometimes, if the environment is simple enough, such models of 
potential futures are fixed and simple; sometimes, if the environment is 
complex, agents need to actively construct hypothetical models and test 
them against a wide variety of assumptions about initial states and rules 
and so forth. What must eventually be added to ISAAC is the ability to 
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use nested representations of the unfolding combat to allow each local 
and global commander to essentially create and manage simulations of 
the entire battlefield. Commanders must thus be able to base their 
decisions and behavior on their simulated picture of the batde (see 
figure 81). 

Note that this split-level nesting allows a myriad of fundamental 
command and control questions to be asked: 

• What is the real "value" of information ? 

• How can I quantify the effects of incomplete knowledge? 

. • How can I exploit what I know the enemy does not know about me? 

• How does my combat effectiveness degrade with decreasing reliability of 
information ? 

• etc. .... 

(For a further discussion of these issues, see the concluding section - 
Two Closing Speculations). It should also be noted that a nested dynamics 
such as the one described here is also a basic design feature of the Santa 
Fe Institute's more general-purpose Swarm modeling system (see Recent 
Examples of Agent-Based Simulations in the Introduction). 

Data Collection Enhancements 

To facilitate a quantitative vice purely qualitative understanding of the 
unfolding patterns of combat, ISAAC provides a rudimentary set of data 
collection tools. These tools currently consist of (1) time series plots of 
various changing quantities describing the step-by-step evolution of a 
given battie, and (2) measures of "how well" certain primitive mission 
objectives are met at a batde's conclusion. The first group of tools 
(using built-in statistics measures) yields quantitative snapshots of a 
batde as it unfolds in time; the second group (using a simple 
parameter-space mapping technique) yields semi-quantitative measures 
of "success" at a mission's end. Details are given in Data Collection. 

As ISAAC'S core engine is enhanced in future versions, so too will 
ISAAC'S core set of data collection tools be enhanced to provide a 
better quantitative understanding of the overall ISAACian dynamics. It 
is impossible to predict the precise form that these data collection 
enhancements will take, except to say that they will obviously be 
developed alongside (and therefore complement) whatever 
enhancements are made to ISAAC'S core engine. Below, we give a feel 
for the kind of enhancements that can be made by briefly discussing 
three enhancements that were planned for the current version but were 
not included for lack of time: 
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• Trajectory-difference Measures 

• Combat Entropy 

• Activity Maps 

The general spirit behind making any future enhancements to ISAAC'S 
data collection capability will be to incorporate ideas from Tier-IV of 
the "Eight Tiers of Applicability" discussed in [2] (see Table 2). Recall 
that Tier-IV applications consist of using nonlinear-dynamics and 
complex systems theoretic inspired measures to describe the complexity 
of combat; i.e., power-law scaling, Lyapunov exponents, entropic 
measures, attractor reconstruction techniques, relativistic information, 
etc. 

Trajectory-Difference Measures 

Military historians are fond of citing examples from past conflicts to 
argue that "were it not for factor X" an outcome of a battle might have 
been very different. Factor X can be a "few more good men," "greater 
will to fight," or a "field commander's intuition." While such arguments 
may or may not be directly strengthened by ISAAC, ISAAC can be used 
to explore such issues by measuring differences between two (or more) 
trajectories. 

Specifically, future versions of ISAAC will include a facility to visually 
display the difference between two evolutions, using different sets of initial 
conditions, combat personalities, and/or force strengths. One 
technique - called a trajectory-difference plot (TDP) - is to color a pixel at 
position (x,y) if and only if the information at (x,y) is different for two 
runs, A and B. Assuming the initial spatial dispositions for red and blue 
are the same for A and B, and that the factor X is "small" (that is, it does 
not immediately have a pronounced effect on the overall evolution), 
the TDP will initially be mostly blank. Colored areas will begin 
appearing as As and B's trajectories diverge. In this way, one will be 
able to direcdy explore such questions as "What difference will it make to 
increase my force strength by 10%?" ox "What difference will it make to be more 
aggressive (or defensive) ? " 

Combat Entropy 

Carvalho-Rodriques [34] has suggested using entropy, as computed 
from casualty reports, as a predictor of combat outcomes. Whether or 
not combat can be described as a complex adaptive system, it may still 
be possible to describe it as a dissipative dynamical system (see [1], page 
28). As such, it is not unreasonable to expect entropy, and/or entropy 
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production,     to     act    as     a    predictor    of    combat    evolution. 
Carvalho-Rodriques defines his casualty-based entropy E by 

Ni    & Ci/Ni 

where C; represents the casualty count (in absolute numbers) and N; 
represents the force strength of the i* adversary (either red or blue). It 
is understood that both C; and N; can be functions of time. 

The plot of the functional form E(x) = x log (1/x), where x = C; /N{, 
has a peak at about 0.37. One could interpret this to mean that once 
C/Nj goes beyond the peak, "it is as if the combat capability of the 
system ... declines, signifying disintegration of the system itself."29 

Woodcock and Dockery [35] provide strong evidence that 
casualty-based entropy is a useful predictor of combat. They base this 
on analysis on both time-independent and time-dependent combat data 
derived from detailed historical descriptions of 601 battles from circa 
1600 to 1970, exercise training-data obtained from the National 
Training Center and historical records of the West-Wall campaign in 
World-War II and Inchon campaign during the Korean war. 

They find that plots of Ea (attacker entropy) versus Ed (defender 
entropy) are particularly useful for illustrating the overall combat 
process: 

• Region I: a low entropy region corresponding to low casualties 
and ambiguous outcomes. Initial phases of a battle pass through 
this region, with the eventual success or failure for a given side 
depending on the details of the trajectory in this en tropic space 

• Region II: a region of high entropy for the defender and low 
entropy for the attacker indicates the attacker wins 

• Region III: a region of ambiguous outcomes, like region I, region 
III represents high attrition with outcomes depending on the 
direction of the trajectory. (Woodcock and Dockery indicate that 
only simulated combat appears able to reach this region.30) 

• Region IV: an analogue of region II, where the entropy roles are 
reversed and the defender wins. 

Woodcock and Dockery further suggest that the measurement and 
display of coupled casualty and reinforcement rates may be a first step 
towards  quantifying  the   battle tempo.  "The  tempo is  then  seen  to 

Reference [35], page 197. 
Reference [35], page 223. 
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characterize, not the physical rate of advance (the usual connection), 
but rather the rate of structural breakdown of the fighting force."31 

We note, in closing, that Carvalho-Rodriques's definition of a 
casualty-based entropy is but one possible definition. One could 
alternatively use generalizations of the Renyi-entropy, Kolmogorov-Sinai 
entropy, or topological entropy, among many other definitions. Despite 
the seeming simplicity of the basic idea, there is strong evidence to 
suggest that entropy will play a fundamental role in understanding the 
underlying dynamical processes of war. 

Activity Maps 

In the current version of ISAAC, individual ISAACAs adapt to changing 
conditions in a very simple manner. Adaptability is essentially confined 
to either altering the sign of, or zeroing out completely, one or more 
components of an ISAACA's personality weight vector. Future versions 
will include a more sophisticated meta-personality-driven dynamics, in 
which personalities become full functions of local context (see More 
Realistic ISAACA State-Space). 

An important insight into the dynamics of an unfolding battle may be 
gained by examining a battle's activity map; i.e., a map not of the 
positions (and movement vectors) of individual combatants (such as is 
currently provided by ISAAC'S simple graphical display of individual 
ISAACA positions), but a map that represents the manner in which each 
combatant is adapting to changes in his local environment. 

An activity map of areas in which the combatants' default rule set is 
adequate for dealing with local conditions will show little or no activity. 
An activity map of areas in which the combatants' meta-personalities are 
repeatedly used to alter their default rules sets will highlight a high 
activity level. Areas of higher activity may be correlated with local 
dynamical conditions that are particularly "sensitive to perturbations" 
and/or with far-from-equilibrium behavioral patterns. ISAAC can then 
be used to explore such questions as "How can I (as a local commander) 
introduce a set of combat conditions that will keep the enemy in a 'highly active' 
state while maintaining a relatively stable state for my own forces'?" 

An activity map can also be thought as a particular example of a more 
general decision-space map, in which sites on the battlefield are colored 
coded to represent the "decision-flow" of ISAACAs and/or local and 
global commanders. One can imagine using ISAAC to address such 
questions as "What kinds of decisions does an ISAACA make?"; "When?"; 
"Why?"; "What local dynamics and patterns tend to disrupt an enemy's 
decision-making capability?", among others. 

Reference [35], page 227. 
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Enhancements to GA Evolution 

Reference [2]32 discusses several recent attempts to use genetic 
algorithms to "evolve" strategy and tactics, including deriving tank 
tactics, and to act as the critical dynamical component of tactical 
decision aids. As one might suspect, genetic algorithms also figure 
prominently in design plans for future versions of ISAAC. 

Future versions of ISAAC will be able to be run in any of three distinct 
modes: 

1. Fixed Rules, which involves no learning and consists of applying 
a set of fixed local cellular-automata-like rules as they are 
implemented in the current version of ISAAC. 

2. Fixed strategies, which consists of applying a fixed set of adaptive 
personalities and/or strategies that are found (i.e., "evolved") 
prior to run-time. 

3. Adaptive learning, which will consist of real-time adaptive 
learning strategies as the system evolves. In this mode, ISAACAs 
will act according to both fixed personalities, rule sets, and 
strategies and according to rules and strategies that they are 
able to "discover" as they evolve. 

Depending on what mode the user chooses to run ISAAC, the second 
step will consist of using a genetic algorithm to find — or "evolve" — the 
"best fit" ISAACAs for a given scenario. In mode 2, the genetic 
algorithm is asked to search for the best mix of personalities and/or 
strategies to use against a particular opponent, or opponent type. Once 
this mix is found, the personalities and strategies are clamped and one 
then proceeds with the actual run from which sample data can be 
extracted for analysis. In mode 3, the genetic algorithm is an active part 
of a given run, and is used as an integral dynamic component providing 
real-time adaptability. 

In either case, the genetic algorithm is used to search the enormous 
range of possible attributes of an ISAACA for the "right mix" of 
parameters that define a desired force capability. The objective function 
that defines what is meant by "right mix" is defined at the user's 
discretion. (See, however, the last section of this paper for speculations 
on how ISAAC itself can be used to suggest alternative objective 
functions.) 

In the current version of ISAAC_GA (i.e., the stand-alone genetic 
algorithm "front-end" to ISAAC'S core engine), the GA is used to evolve 

32     See pages 85-94. 
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a pool of red personalities to perform a given mission against a fixed 
blue force. The only variability that is allowed on the blue side is its 
spatial disposition. (Recall that the GA automatically averages over a 
user-specified number of initial conditions.) Moreover, red's mission 
"fitness" is defined as a weighted function of certain mission 
"primitives" (such as "minimizing time to enemy flag", "minimizing 
casualties," and so on) that are defined entirely from red's perspective. 
Future versions will enhance this basic GA engine in several ways: 

1. The GA recipe (see The Basic GA Recipe in Genetic Algorithm 
Evolutions oflSAACA Personalities) will be enhanced to speed up 
both convergence and execution times. The current program is 
of proof-of-concept caliber only, and can be improved upon in 
many ways. 

2. The full (i.e., multi-squad), rather than truncated, version of 
ISAAC will be used so that the GA can search for optimal 
squad-specific sizes and personalities and include both 
local-command and global-command-related parameters in its 
search space. 

3. Red's current red-centric mission fitness will be generalized to 
include blue-primitives. Instead of defining red's mission fitness 
by focusing entirely on how well red performs, the user will also 
be given the option of including primitives defining how well 
(or badly) blue performs. For example, red may assume a 
specific mission for blue, and then include an assessment of 
how well blue performs that mission as a part of an assessment 
of its own mission. Red thus effectively will be given an ability to 
consider not just how well it is doing (i.e., to maximize its own 
fitness), but how badly blue is doing, from red's perspective (to 
simultaneously minimize blue's fitness). 

4. The GA will be used to evolve personalities for both the entire 
force (as it does currently) and individual ISAAGAs. 

Future development of ISAAC'S GA search capability is also likely to 
borrow from Hillis' coupled-GA strategy [6]. Since this strategy is 
discussed at the end of appendix B, we will here only outline the 
approach. The idea is to set up not one but two interacting genetic 
algorithm populations, one population consisting of "solutions" (or, in 
Hillis' original formulation, hosts), and the other consisting of 
"problems" (or, parasites). Having the two populations interact 
effectively sets up an "arms-race" between the two populations. While 
the hosts are trying to find better and better ways to sort the problems, 
the parasites are trying to make the hosts less and less adept at sorting 
the problems by making the problems "harder." 
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The interaction between the two populations dynamically alters the 
form of the fitness function. Just as the hosts reach the top of a fitness 
"hill," the parasites deform the fitness landscape so that the hill 
becomes a "valley" that the hosts are then forced to find ways to climb 
out of and start looking for new peaks. When the population of 
programs finally reaches a hill that the parasites cannot find a way to 
turn into a valley, the combined efforts of the co-evolving hosts and 
parasites has found a global optimum. Thus, the joint, coupled, 
population pools are able to find better solutions quicker than the 
evolutionary dynamics of populations consisting of sorting programs 
alone. 

The application to ISAAC is conceptually straightforward. The idea is to 
apply genetic algorithms not to just one side of a conflict, or to use 
genetic algorithms to find "optimal" combat tactics for fixed sets of 
constraints and environments, but to use joint, coupled, pools of 
populations, one side of which represents a set of tactics or strategies to 
deal with specific scenarios, and the other side of which seeks ways to 
alter the environment in ways that make it harder and harder for those 
tactics or strategies to work. Thus, future versions of ISAAC_GA will be 
able to search not just in the red personality space for a fixed blue 
force, but in a joint red:blue personality space in which blue's "mission" is 
to make it as hard as possible for red to succeed. 
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What Is ISAAC Useful For? 
ISAAC has been developed primarily to address the basic question: "To 
what extent is land combat a self-organized emergent phenomenon?" As such, its 
intended use is not as a full system-level model of combat but as an 
interactive toolbox (or "conceptual playground") in which to explore 
high-level emergent behaviors arising from various low-level (i.e., 
individual combatant and squad-level) "interaction rules." The idea 
behind ISAAC is not to model in detail a specific piece of hardware 
(M16 rifle, M101 105mm howitzer, etc.), but to provide an 
understanding of the fundamental behavioral tradeoffs involved among 
a large number of notional variables. 

Because ISAAC takes a bottom-up, synthesist approach to the modeling of 
combat - vice the traditional top-down, or reductionist approach - 
ISAAC'S conceptual focus is very different from the focus of most 
conventional models. For example, models based on differential 
equations homogenize the properties of entire populations and ignore 
the spatial component altogether. Partial differential equations - by 
introducing a physical space to account for troop movement - fare 
somewhat better, but still treat the agent population as a continuum. In 
contrast, ISAAC consists of a discrete heterogeneous set of spatially 
distributed individual agents (i.e., combatants), each of which has its 
own characteristic properties and rules of behavior. These properties 
can also change (i.e., adapt) as an individual agent evolves in time. 

Most traditional models focus on looking for equilibrium "solutions" 
among some set of (pre-defined) aggregate variables. The LEs 
themselves are effectively mean-field equations (in the parlance of 
physics), in which certain variables such as the attrition rate are 
assumed to represent an entire force and the outcome of a battle is said 
to be "understood" when the equilibrium state has been explicitly 
solved for. In contrast, ISAAC focuses on understanding the kinds of 
emergent patterns that might arise while the overall system is out of 
equilibrium. 

In ISAAC, the "final outcome" of a battle - as defined, say, by measuring 
the surviving force strengths - takes second stage to exploring how two 
forces might "co-evolve" during combat. A few examples of the 
profoundly non-equilibrium dynamics that characterizes much of real 
combat include: the sudden "flash of insight" of a clever commander 
that changes the course of a battle; the swift flanking maneuver that 
surprises the enemy; and the serendipitous confluence of several 
far-separated (and unorchestrated) events that lead to victory. These 
are the kinds of behavior that Lanchesterian-based models are in 
principle incapable of even addressing. ISAAC represents a first step 
toward being able to explore such questions. 
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ISAAC is designed to allow the user to explore the evolving patterns of 
macroscopic behavior that result from the collective interactions of 
individual agents, as well as the feedback that these patterns might have 
on the rules governing the individual agents' behavior. While this 
preliminary version of ISAAC can do no more than suggest new ways of 
thinking about some old issues, it is encouraging to note that, even at 
this early juncture, ISAAC already has an impressive repertoire of 
emergent behaviors: 

• Forward advance 

• Frontal attack 

• Local clustering 

• Penetration 

• Retreat 

• Attack posturing 

• Containment 

• Flanking Maneuvers 

• Defensive posturing 

• "Guerilla-like" assaults 

• Encirclement of enemy forces 

• many more... 

Moreover, ISAAC frequently displays behaviors that appear to involve 
some form of "intelligent" division of red and blue forces to deal with 
local "firestorms" and skirmishes, particularly those forces whose 
personalities have been "evolved" (via a genetic algorithm) to perform a 
specific mission. It must be remembered that such behaviors are not 
hard-wired-in but are effectively an emergent property of a 
decentralized and nonlinear local dynamics. 

The ultimate goal is for ISAAC to become a fully developed complex 
systems theoretic analyst's toolbox for identifying, exploring and 
possibly exploiting emergent collective patterns of behavior on the 
battlefield. 

The payoff of using ISAAC, or some other multiagent-based model of 
land combat, is a radically new - and decidedly non-Lanchesterian - way 
of looking at some fundamental issues of land warfare. Specifically, 
ISAAC is being designed to help analysts ... 

• Understand how all of the different elements of combat fit 
together in an overall "combat phase space" 

• Understand the out-of-equilibrium patterns of behavior vice the 
approach to equilibrium states stressed by most conventional 
models 
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• Identify and explore emergent collective patterns of behavior on 
the battlefield 

• Understand the effects of information uncertainties, 
inaccuracies, and time-delays 

• Assess the value of information: How can I exploit what I know the 
enemy does not know about me? 

• Explore tradeoffs between centralized and decentralized 
command-and-control (C2) structures: Are some C2 topologies more 
conducive to information flow and attainment of mission objectives than 
others? What do the emergent forms of a self-organized C2 topology look 
like? 

• Provide a natural arena in which to explore consequences of 
various qualitative characteristics of combat (unit cohesion, 
morale, leadership, etc.) 

• Study the general efficacy of combat doctrine and tactics 

• Explore emergent properties and/or other "novel" behaviors 
arising from low-level rules (even doctrine if it is well encoded) 

• Capture universal patterns of combat behavior by focusing on a 
reduced set of critical drivers 

• Suggest likelihood of possible outcomes as a function of initial 
conditions 

• Provide near-real-time tactical decision aids by providing a 
"natural selection" (via a genetic algorithm) of tactics and/or 
strategies for a given combat scenario. 

Furthermore, ISAAC provides a natural arena in which to explore the 
Clausewitzian "fog-of-war," or the effects of uncertainties and/or 
inaccuracies of intelligence data and of time-delays in reporting 
information. More important, from an Information Warfare perspective, 
ISAAC provides a framework for quantifying the "value" of information 
on a battlefield. ISAAC can, in principle, be used to explore the 
consequences of given (personality-defined) force and/or weapon 
mixes. It can also be used to re-examine traditional measures of combat 
effectiveness and define requirements for what might loosely be called 
nonlinear data collection, which refers to data that capture the 
continuously evolving relationships among all of the interdependent 
components of combat (as compared with more static measures — such 
as force attrition — commonly used by conventional models). 
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Before illustrating how ISAAC (or its future versions) can be used to 
explore three sample issues in land warfare, we first briefly describe 
what a typical "new sciences" approach really entails. 

How is Work in the "New Sciences" Actually Done? 

There is a popular misconception that complex systems theory is a 
well-defined science; that it consists of some canned set of software 
routines ready to be downloaded from, say, Microsoft's WWW site, and 
directly unleashed on whatever "complex problem" happens to strike 
one's fancy. This cannot be further from the truth. The reality is that 
much of what goes under the name of "complex systems theory" 
actually consists of a hodgepodge of on-the-fly hand-crafted and 
tinkered techniques and approaches that say more about the research 
style of a particular complex systems "theorist" than they do about the 
how the new sciences are practiced as a whole. There is certainly no 
existing complex systems theory model per se that can be ported over to 
describe land combat. The current crop of models are either 
specifically tailored to particular problems or are general purpose 
simulators (like the Santa Fe Institute's SWARM programming 
language) that must be carefully tuned to apply to specific systems. 

In fact, most "new sciences" research is generally practiced by following 
these basic steps (these steps are not meant to be taken facetiously!): 

Step 1    -   Think of an interesting question to ask regarding the 
behavior of a real system (or find a real system to study) 

Step 2   -   Simplify the problem as much as possible without losing 
the "essence" of the system 

Step 3   -   Write a program to simulate the individual agents of the 
system, following simple rules with specified interactions 

Step 4   -   "Play" (i.e., interact) with the simplified models of the 
/    system ■ 

Step 5   -   Sitibackandwatch forpatterns; run the program many 
times to build up statistics and an intuition for when and 
how different patterns emerge 

Step 6   -   Develop theories about how (£e real system behaves 

Step 7   -   Tinker with the model, change prameters, identify 
sources of behavioral changes, simplify it even fürther 

Step 8   -   Repeat steps 4 through 7! 

The critical steps - steps four through seven - are highlighted in gray. 
The most important step is step five: sit back and watch for patterns.'Much 
of the early work with trying to understand the behavior of a system 
consists of finding ways to spot overall trends and patterns in the 
behavior of a system while continually interacting and "playing" with 
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"toy-models" of the system. If one is serious about applying the "new 
sciences" to land warfare, one must be ready to rethink some of the 
conventional strategies and approaches to modeling systems. 

Figure 82. Interplay between experience and theory in the forward- 
and inverse-problems of complex systems theory 
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Another important element of the basic approach of complex system 
theory to understanding the behavior of complex systems is that the 
forward-problem, and inverse-problem must both be studied 
simultaneously (see figure 82), and that the interplay between 
experience and theory is never overlooked. 

The forward-problem consists essentially of observing either real-world 
behavior or the behaviors of a model of a complex system with the 
objective being to identify any emergent high-level behavioral patterns 
that the system might possess. The inverse problem deals with trying to 
induct a set of low-level rules that describe observed high-level 
behaviors. Starting with observed data, the goal here is to find 
something interesting to say about the properties of the source of the 
data. The forward problem is therefore concerned with theoretical tools 
that are used to identify patterns, while the inverse problem is concerned 
with tools that are used to induct low-level rules (or models) that generate 
the observed high-level behaviors. 

A lengthier discussion of modeling and simulation and how it pertains 
to land warfare appears in [1] and [2]. Thoughtful discussions about 
the general use of models are given by Denning [36] and Casti [37]. 
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Sample Issues 

Below, I briefly discuss how a multiagent-based model such as ISAAC 
can help explore three sets of fundamental issues: 

1. Centralized versus decentralized command and control structures 

2. The role of the "human element" in combat modeling 

3. The relationship among all of the dynamical elements of combat. 

Centralized Versus Decentralized Command and Control Structures 

In its simplest run-mode, ISAACian dynamics is stricüy decentralized: 
ISAACAs do not communicate with other ISAACAs and all ISAACAs 
base their decisions on information that is strictly local to their sensor's 
field-of-view. In this mode, ISAAC represents a simple "toy-model" view 
of a strictly decentralized combat. ISAAC'S built-in command and 
control structure can be Used to explore the consequences of having a 
centralized versus decentralized C2 structure. Moreover, because of 
ISAAC'S simple design, more probing questions regarding, for example, 
how the overall efficacy of a given command and control system 
depends on its hierarchical structure (i.e., connectivity) can also be 
addressed. 

Figure 83. A schematic representation of an ISAACA C2 structure 
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Recall that each ISAACA lives on a simple two-dimensional lattice, and 
is free (within constraints) to move in all directions up to a specified 
range. Each ISAACA is also "connected" (i.e., can communicate with) 
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other ISAACAs on an underlying graph that determines the command 
and control hierarchy. That is, each ISAACA on a level N of the 
hierarchy receives information and/or orders from ISAAGAs on the 
next higher level (level N+l) and disseminates information and/or 
orders to ISAACAs on the next lower level (level N-l). Each ISAACA, 
on any level, can receive information, send information, and act on 
information, appropriate to all ISAACAs on the given level. ISAACAs on 
the lowest level (level 1) represent units that physically interact with 
enemy units in the lattice environment (see figure 83). 

Figure 84. Behavior (arbitrary measure) as a function of C2 structure 
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Imagine a topology landscape, ranging from the trivial totally 
disconnected graph on one end, to the (equally as trivial) totally connected 
graph on the other, with all possible graphs (and therefore all possible 
C2 structures in between); see figure 84. The problem is to determine 
how the overall behavior changes (either qualitatively or quantitatively) 
as the landscape is systematically swept from one end to the other: 

• How does the topology affect behavior? 

• Are some topologies more conducive to information flow and attainment 
of objectives than others'? 

A Self-Organized C2 Structure? 

A more speculative multiagent-based approach to command and 
control is to see whether a decentralized variant of ISAAC possessing an 
ability to evolve (whether via a genetic algorithm or some other means) 
can be designed so that a command control structure emerges on its own\ 

If an ISAACA's chromosome encodes a sufficiently large volume of 
"possibility space" to include the evolution of local communication, it is 
entirely conceivable that — with the right fitness function guiding the 
overall ecology of ISAACAs — the system will by itself find that the most 
"efficient" use of the information available on the battlefield entails 
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effectively establishing a command and control structure. ISAAC may 
also be able to point out alternative C2 structures that are more suitable 
for dealing with given scenarios. 

The "Human Element" of Combat Modeling 

One of the most significant shortcomings of conventional 
Lanchester-equation-based models of combat is their almost total 
disregard for the human (i.e., psychological and/or decision-making 
capability) factor. That this problem continues to plague most 
conventional combat models, of course, is due not to a lack of effort on 
the part of the modeling and simulation community, but to the fact that 
the problem may be fundamentally unsolvable. The problem of 
predicting what a given individual will do in a given situation, armed 
with a certain set of true or untrue facts, is already a hard enough 
problem. The problem of predicting what an individual will do in a 
given situation when that individual must base his decision not just on 
simple "facts" but also on what he thinks other individuals will do as a 
result of his impending decision (and who themselves, in turn, base 
their decisions on what they think others will choose to do, and so 
on...), is essentially an impossible problem to solve, at least with the 
mathematical tools currently available. And yet, this nested nonlinear 
decision-making process is what arguably drives much of the behavior 
on the real battlefield. 

Most honest efforts to incorporate this all-important "human element" 
into models of combat take a more-or-less traditional Artificial 
Intelligence (AI) approach: they either rely on the decision-making 
capability of expert systems or incorporate some form of fuzzy logic into 
the overall decision-making process. The differences between 
traditional AI approaches and the multiagent-based approach that 
uniquely characterizes a complex systems theoretic approach to land 
combat modeling were described earlier in this paper (see Agent-Based 
Models in the Introduction). What the design philosophy of ISAAC, in 
particular, brings to this problem is a natural context in which to 
describe combat as consisting of many mutually interacting elementary 
combatants, each reacting to local environmental stimuli and 
information according to a quantifiable internal value system. ISAAC thus 
offers a very natural complex systems theoretic arena in which to 
examine what high-level behaviors might emerge from 
adaptive-personality-driven local dynamics. 

The ISAAC testbed consists essentially of a medium-sized "ecology" of 
elementary adaptive combatants that simultaneously act as both 
predator and prey. Each ISAACA acts according to a locally devised 
strategy that is based in part on its local perception/knowledge, in part 
on communicated nonlocal information, and in part on its forecast of 
enemy action. The resulting "combat ecology" consists of "local actions 
predicated on anticipated local actions predicated on..." and so on. 

232 



^reducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

Now, while it would be foolish to suppose that any model (at least in the 
foreseeable future) can model exactly the dynamics of any one human, 
or that of a few humans working in concert, it is not hard to imagine 
modeling the effects of interactions among many humans. The viability of 
the whole of social science depends on this fact. And, as superbly 
demonstrated by Epstein's and Axtell's agent-based Sugarscape model of 
social systems [16], this supposition can go a long way indeed to 
"explaining" many system-wide behaviors that were heretofore believed 
to be "too complex" to understand. A useful analogy is the game of 
darts: while one cannot know in advance where an individual dart will 
hit a dartboard, one is reasonably well assured of attaining a Gaussian 
"hit pattern" distribution after throwing a few hundred darts. 

ISAAC'S fundamentally bottom-up, synthesist approach allows a land 
combat analyst to explore a variety of "unconventional" 
personality-driven questions: 

• Which personalities/personality-mixes are more (or less) 
conducive to generating coherent (or incoherent) collective 
patterns of behavior? 

• Given that a force must engage an enemy characterized by a 
given personality, which personalities are best suited for 
performing given missions? 

• Which personalities tend to generate high (or low) entropy? 

• For which regions in ISAACA's parameter-space are the 
emergent patterns stable (or unstable)? 

• Are there regions in ISAACA's parameter-space that are sensitive 
to small perturbations (or chaotic), and might there be a way to 
exploit this in combat (as in selectively driving an opponent into 
these more sensitive regions of phase space)? 

• What is the "optimal" platoon size for a given mission? 

• many others... 

Combat "State- Space" 

ISAAC provides a natural framework within which it is possible to talk 
about a combat "state-space." By this I mean a hypothetical 
N-dimensional space — spanned by the parameters that define each 
ISAACA and define the complete batdefield — within which the states of 
the evolving battle trace out particular trajectories. 
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One of the ultimate goals in designing ISAAC is to provide a basic set of 
tools to explore this state space. Once the behaviors in a sufficiently 
large volume of this state-space are mapped out — fixed point behavior, 
periodic states, and (as is likely, given the nonlinearity of the underlying 
dynamics) chaotic behavior — the range of possible questions that one 
can ask about the general behavior of this adaptive-agent-driven combat 
"ecology" becomes enormous. 

One could directly ask, for example, for the kinds of "personality mixes" 
that are best-suited to deal with a known (or unknown) enemy. One 
could explore tradeoffs between personality and weapon-mix, or the 
value of having a "risk-taking" commander in charge of a group of 
ISAACAs of a given personality class. One could ask about the kinds of 
tactics and strategies that can be used, for a given mix of friendly and 
enemy force types, to coerce the combat trajectory to swing more 
toward a region of state-space that is more conducive for a "win," or 
toward a region within which the enemy's state generally becomes less 
stable. 

In short, the act of mapping out the combat state-space represents a 
step toward obtaining a greater intuitive sense about how all of the 
different elements of combat fit together. The stand-alone 
parameter-space mapper program, ISAAC_PM, provides a glimpse of 
two-dimensional "slices" of this larger phase space (see Taking 2D 
"Slices" of ISAAC'S Parameter Space). 

Figure 85. Schematic representation of the combat phase space 
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In the prologue to this report, artificial life is introduced as an attempt 
to understand life-as-we-knoxv-it by exploring a larger context of 
life-as-it-could-be. ISAAC is then introduced as a tentative first step toward 
furthering our current understanding of the fundamental principles of 
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land warfare by providing an exploratory vehicle for examining a larger 
context of combat-as-it-could-be. Among the important questions to ask in 
this context is, "What regions in ISAAC'S phase-space are Lanchesterian-like?" 

Miscellaneous Issues and Questions 

We conclude this report by discussing a few miscellaneous issues: 

• 

• 

Selfishness vs. Atruism 

Self-Organized Criticality in Combat 

Scaling Problem 

Self-Organized Information ? 

Selfishness vs Altruism 

A fundamental problem in natural evolution and the evolution of social 
cultures is to understand the relationship between selfishness and 
altruism. On an individual level, the problem is to understand what 
contexts drive individuals to act selfishly vice cooperatively. On a more 
global level, there is the question of whether local selfishness - that is, a 
set of purely selfishly motivated individual acts designed to maximize an 
immediate payoff- can induce globally cooperative behaviors. 

Axelrod and Hamilton [38], among others, has studied this problem by 
applying game theory to the idealized Prisoner's Dilemma problem. In the 
prisoner's dilemma problem, the fitness measure (or the "payoff 
matrix" in the parlance of game-theory) is such that individuals 
maximize their fitness collectively in the long term by cooperatively 
ignoring the behavior that would maximize their fitness in the short 
term. If the game is played once, individuals do best by not cooperating 
(i.e., defecting). If the game is played repeatedly, however, individuals 
do best by cooperating with one another. Axelrod and Hamilton have 
been able to show that, in the context of Darwinian evolution, locally 
selfish behavior can lead to global cooperation. 

While this issue is philosophically intriguing in the abstract, it takes on 
an added dimension in the context of military command and control. 
Each level of a command and control hierarchy consists of entities that 
are driven by locally selfish goals. On the lowest (i.e., individual 
combatant) level such a purely "selfish" goal might simply be to stay 
alive. In ISAAC, each ISAACA selfishly chooses the best move, where 
"best" is interpreted purely locally. On a local command level, each 
local commander selfishly wants to issue the best local movement 
vectors to its subordinates. The global commander simply wants to "win 
the battle." Entities on the various levels must not only assimilate and 
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react to information that is local to them, but must do so on time scales 
that are appropriate for their level. Yet, if the command and control 
structure is to be a viable one, all of these individually and locally selfish 
acts must successfully combine to achieve a collective goal (or mission). 
The system (i.e., the entire combat force) must therefore carefully weigh 
short-term success (both perceived and real) and long-term strategy and 
fitness. 

Such a view of command and control immediately leads to some 
interesting issues. For example, it is not immediately obvious that a 
combat force will perform its mission well when all of its constituent 
combatants are purely selfishly driven. Basic questions include ... 

• When is it appropriate (from a purely dynamical systems point of view) to 
sacrifice local fitness (i.e., to accept less-than-optimal local fitness) in 
order to achieve a greater (i.e., higher level) measure of mission success"? 

• What are the effects of dissent in command; that is, how is the overall 
mission affected by having one local commander "at odds" with another 
or with his global commander'? 

• What are the general effects of homogeneity (and heterogeneity) of 
ISAACA personalities? 

Kauffman's Patches 

In this context, one could also explore the applicability of Kauffman's 
patch-optimization procedure [39]. The idea is to attack an optimization 
problem (that consists of many interacting parts) by dividing it into a 
quilt of nonoverlapping "patches" and optimizing "selfishly" within each 
patch. Kauffman's work suggests that while patches may find local 
"solutions" that are harmful to the whole, the overall process 
nonetheless often succeeds in finding solutions that are "good" for the 
entire system. Because command and control obviously involves 
overlapping (vice Kauffman's non-overlapping) patches, it is clear that 
this patch-optimization procedure - if it applies at all - must be somehow 
amended. However, because the basic approach resonates so strongly 
with the "locally selfish'-driven dynamics that underlies much of 
command and control, it is certainly worth exploring. 

Self-Organized Criticality in Combat 

Recall that self-organized criticality (SOC) is the idea that dynamical 
systems with many degrees of freedom naturally self-organize into a 
critical state in which the same events that brought that critical state 
into being can occur in all sizes, with the sizes being distributed 
according to a power-law.33 

33     See pages 101-107 of [1]. 
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"Criticality" here refers to a concept borrowed from thermodynamics. 
Thermodynamic systems generally get more ordered as the temperature 
is lowered, with more and more structure emerging as cohesion wins 
over thermal motion. Thermodynamic systems can exist in a variety of 
phases - gas, liquid, solid, crystal, plasma, etc. - and are said to be 
critical if poised at a phase transition. Many phase transitions have a 
critical point associated with them, that separates one or more phases. 
As a thermodynamic system approaches a critical point, large structural 
fluctuations appear despite the fact the system is driven only by local 
interactions. The disappearance of a characteristic length scale in a 
system at its critical point, induced by these structural fluctuations, is a 
characteristic feature of thermodynamic critical phenomena and is 
universal in the sense that it is independent of the details of the system's 
dynamics. 

The kinds of structures SOC seeks to describe the underlying 
mechanisms for look like equilibrium systems near critical points but 
are not near equilibrium; instead, they continue interacting with their 
environment, "tuning themselves" to a point at which critical-like 
behavior appears. In contrast, thermodynamic phase transitions usually 
take place under conditions of thermal equilibrium, where an external 
control parameter such as temperature is used to tune the system into a 
critical state. 

Introduced in 1988, SOC is arguably the only existing holistic 
mathematical theory of self-organization in complex systems, describing 
the behavior of many real systems in physics, biology and economics. It 
is also a universal theory in that it predicts that the global properties of 
complex systems are independent of the microscopic details of their 
structure, and is therefore consistent with the "the whole is greater than 
the sum of its parts" approach to complex systems. Put in the simplest 
possible terms, SOC asserts that complexity is criticality. That is to say, that 
SOC is nature's way of driving everything towards a state of maximum 
complexity. 

In general, SOC appears to be prevalent in systems that have the 
following properties: 

• they have many degrees of freedom 

• their parts undergo strong local interactions 

• the number of parts is usually conserved 

• they are driven by being slowly supplied with "energy" from an 
exogenous source 

• energy is rapidly dissipated within the system 
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In systems that have these properties, SOC itself is characterized by 

• a self-organized drive towards the critical state 

• intermittently triggered ("avalanche"-style) release of energy in 
the critical state 

• sensitivity to initial conditions   (i.e., the trigger can be very 
small)34 

• the critical state is maintained without any external "tuning" 

The critical state is an attractor for the dynamics: systems are inexorably 
driven toward it for a wide variety of initial conditions. Frequently cited 
examples of SOC include the distribution of earthquake sizes, the 
magnitude of river flooding, and the distribution of solar flare x-ray 
bursts, among others. Conway's Life-game CA-rule (see Appendix A), 
which is a crude model of social interaction, appears to self-organize to 
a critical state when driven by random mutations. Another vivid 
example of SOC is the extinction of species in natural ecologies. In the 
critical state, individual species interact to form a coherent whole, 
poised in a state far out of equilibrium. Even the smallest disturbances 
in the ecology can thus cause species to become extinct. Real data show 
that there are typically many small extinction events and few large ones, 
though the relationship does not quite follow the same linear power-law 
as it does for avalanches. 

Is war, as suggested by Bak and Chen [40], perhaps a self-organized 
critical system? A simple way to test for self-organized criticality is to 
look for the appearance of any characteristic power-law distributions in 
a system's properties. Richardson [41] and Dockery and Woodcock [35] 
have examined historical land combat attrition data and have both 
reported the characteristic linear power-law scaling expected of 
self-organized critical systems. Richardson examined the relationship 
between the frequency of "deadly quarrels" versus fatalities per deadly 
quarrel using data from wars ranging from 1820 to 1945. Dockery and 
Woodcock used casualty data for military operations on the western 
front after Normandy in World War II and found that the log of the 
number of battles with casualties greater than a given number C also 
scales linearly with log(C). 

34 Sensitivity to initial conditions is usually a trademark of chaos in dynamical 
systems. Unlike fully chaotic systems, however, in which nearby trajectories diverge 
exponentially, the distance between two trajectories in systems undergoing SOC grows 
at a much slower (power-law) rate. Systems undergoing SOC are therefore only 
"weakly chaotic." There is an important difference between fully developed chaos and 
weak chaos: fully developed chaotic systems have a characteristic time scale beyond 
which it is impossible to make predictions about their behavior; no such time scale 
exists for weakly chaotic systems, so that long-time predictions may be possible. 
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ISAAC'S data collection ability - particularly its cluster-counting routines 
(see Data Collection) - can be used to search for evidence SOC-like 
behavior, and for the combination of parameters (if any) that it appears 
in ISAAC'S N-dimensional parameter space. 

Scaling Problem 

As has been emphasized repeatedly throughout this report, ISAAC is 
designed to be nothing more than a "conceptual playground" in which 
to explore certain fundamental issues of land warfare; or a tool by 
which to take a baby step beyond simple metaphor in discussions 
concerning the applicability of complex systems theory to land warfare. 
ISAAC is certainly not intended to be used as a system-level model of 
real combat. Nonetheless, there is a question that needs to be raised 
about how ISAAC might - or might not - scale with force size. For example, 
it is not immediately obvious that whatever patterns of behavior one 
observes by running ISAAC using, say, 100 ISAACAs per side, to 
represent some small-scale "conflict," necessarily scales to display the 
same patterns (or warrant the same conclusions to be drawn from) 
running ISAAC using, say, 1000 ISAACAs per side. 

Self-Organized Information? 

The statements "I understand this system" or "I understand how this 
system behaves," are, unfortunately, very commonly misunderstood to 
be synonymous with "I can model this system." 

Here is (only a slightly exaggerated) form of the conventional wisdom's 
"party-line:" Once I have intelligently put together a model or simulation of a 
system, the "problem" of understanding how that system behaves is effectively 
"solved." While I must still, of course, observe the behavior of the model, most of 
the dirty work has already been accomplished. The true solution lies in modeling; 
everything else is mop-up work! 

In fact, this kind of reasoning is dangerously false. Suppose a physical 
system's behavior is complicated enough to warrant the development of 
a model (or models) in order for me to try to understand it. I will either 
come up with a model that captures none of the behavior of the real 
system — in which case, I have failed, and must start over — or I will 
succeed in reproducing some (or most) of the real system's complicated 
dynamics. In the second case, my model will have attained a degree of 
"realism" that convinces me that it can be used as a surrogate system to 
study the behavior of the real system. While one can argue that the act 
of capturing the essence of the real system in a model deepens one's 
understanding of that system purely as a result of having effectively 
simplified the definition of the system, this act — by itself — does not 
necessarily lead to better understanding. If the model's behavior is as 
"complicated" as that of the system it purportedly captures the essence 

239 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

of, one is still faced with the problem of how to understand the model's 
behavior. 

In [2]35, a computer model of natural evolution called Tierra was cited 
as an example of a case where a model captures a real system's behavior 
so well that the task of understanding its own behavior is far from trivial. 
In Tierra's case, the unraveling of basic evolutionary phenomena such as 
a rich diversity of species, symbiosis, parasitism, para-parasitism, and so 
on, comes at a substantial price of having to do a considerable amount 
of "field work" with the computer model and its outputs just to 
understand what is "really happening" on a given run. 

The point of this short discussion is to remind the reader that the 
"problem" ISAAC is designed to address (if not by its current, skeletal, 
version then by its future, more complete and mature, form) actually 
consists of two separate issues: 

• Issue #1: To Find a Proper Complex Systems Theoretic Model 
Testbed. This issue involves the actual design of a 
multiagent-based "toy-combat" ecology, which involves all kinds 
of questions regarding adaptability, communication, evolution, 
combat and so on. For example, how does an individual ISAAC 
determine its strategy? What are the appropriate genomes? How 
much memory is needed? How is a strategy defined? How do the 
actions of low-level combatants differ from higher-level ones? ... 
This first issue is "solved" when one provides an answer to the 
question, "Has ISAAC captured the critical drivers that determine the 
patterns of behavior of real combat?" This report discusses the first 
tentative steps that have been taken toward addressing this 
question. 

• Issue #2: To Provide an Analyst's Toolbox for Exploring 
Emergent Patterns of Behavior. The second issue involves the 
understanding of what is actually going on within the 
toy-batdefield once ISAAC begins evolving. The question here is, 
"Now that (a "mature" version of) ISAAC is up and running — 
orders are being sent down echelon via a realistic C2 structure, 
combatants adapt and react according to appropriate local tactics 
and both short- and long-term strategies, and so on — how do we 
make sense of what ISAAC is really doing?' As indicated in the 
discussion above, this important question can be asked of any 
dynamical system, whether it is real or simulated. Apart from 
applying the arsenal of tools and mathematical descriptions used 
by nonlinear dynamics and complex systems theory to 
understand behaviors of complex systems (see [1] and [2]), the 

33      See page 35. 

240 



Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare 

speculative suggestion made here involves using ISAAC itself to 
address the problem (see discussion below). 

I have already discussed using genetic algorithms as the engine driving 
both individual learning and long-term tactics and strategy acquisition. 
A third — and conceptually most far-reaching — use of genetic 
algorithms involves using them to search through the (enormously 
high-dimensional) space of all possible ways of filtering, assimilating, and 
exploiting information to make command decisions. 

Consider a future version of ISAAC whose dynamics include an 
embedded command and control structure in which local and global 
commanders base their decisions (in part) on a nested layering of 
combat scenarios (see Nested ISAAC Dynamics). What is implicit in such a 
model is that the local and global commanders have each found a way 
(or a way has been defined for them) to characterize whatever 
information is relevant for their command decision. Now, on the one 
hand, it is entirely reasonable to "hard-wire" in hypothetical 
characterizations, using the knowledge and experience of real 
commanders. This is, in fact, what is most commonly done in 
conventional AI-based warfare models. On the other hand, if the tools 
and potential power of complex systems theory are to be used to their 
fullest, ISAAC gives us a unique opportunity to inquire about what the 
relevant bits of information really are. 

Figure 86. A schematic representation of how genetic algorithms may 
be used to find the "best" partitioning of the combat information-space 
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D 
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D 
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The idea is use a genetic algorithm (or some other heuristic search 
tool) to explore all possible ways in which a local commander can 
characterize and use the information describing (what he believes is) 
the overall state of the battle. By a characterization, I mean literally any 
well-defined compression of whatever information goes into defining 
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the overall state of the system. Conventional measures include unit 
formations, order-of-battle, distance to goal, friendly and enemy 
attrition rates, and so on. Less conventional measures might include a 
combat entropy, or be defined along the lines suggested by relativistic 
information theory (see pages 75-79 in [2]), etc. 

Call any such effective compression of relevant battlefield information a 
partitioning (= P) of that combat state-space. Call the degree to which an 
objective (or set of objectives) that drives a commander's 
decision-making process has been attained the combat fitness function (= 
F), so that a higher fitness equates to being "closer to" the ultimate 
objective. Conceptually, a commander's task may be described as the 
problem of identifying, assimilating and exploiting the most 
appropriate P for attaining a given F. Figure 86 shows a schematic of 
this basic idea. 

For example, a local commander might "discover" the fact that one of 
the most important pieces of information describing the state of the 
overall batde — and which therefore plays a significant role in his 
decision-making process — is information regarding the distribution of 
adaptability on the battlefield. That is to say, information that does not 
describe the state of the batde, per se (i.e., what forces are engaging the 
enemy where), but the manner in which his forces are adapting to local 
conditions. A local commander can then build on his experiential 
knowledge of such wta-patterns by associating local combat conditions 
with the right mix of adaptive ISAACAs to deal with those conditions. 
Some conditions may warrant a force consisting of rather fixed, rigid 
ISAACAs that are "optimized" for a particular kind of skirmish but are 
otherwise relatively inflexible and nonadaptive. Other conditions might 
require a more robust adaptive force, that can quickly assimilate 
changes to their local environment and modify their response 
accordingly, A genetic-algorithm-based approach to filtering all possible 
forms of information may help the local (and global) commander to 
identify and map the right local conditions to appropriate blends of 
force personalities and types 
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Epilogue: On the use of simulations  

"Although it is true that, in the 300 years since 
Newton, most of theoretical science has been done 
using the rigorous, analytical approach, the reason 
for that is simply that that is the only kind of science 
could be done ... The lack of computational power 
meant that researchers could only answer questions 
that had clean, elegant solutions ... It is only now 
that we have the ability to do complex calculations 
and simulations that we are discovering that a great 
many systems seem to have an inherent complexity 
that cannot be simplified ... After another 300 
years, we will no doubt feel as comfortable using 
computer simulations to analyze nature as scientists 
today feel using Newton's laws of motion to 
describe the trajectory of a falling stone." 

- Glenn W. Rowe, Theoretical Models in Biology: The Origin of 
Life, the Immune System, and the Brain (Clarendon Press) 
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Appendix A: A Brief Primer  on  Cellular 
Automata 

Cellular automata (CA) are a class of spatially and temporally discrete, 
deterministic mathematical systems characterized by local interaction 
and an inherendy parallel form of evolution. First introduced by von 
Neumann in the early 1950s to act as simple models of biological 
self-reproduction, CA are prototypical models for complex systems and 
processes consisting of a large number of identical, simple, locally 
interacting components. The study of these systems has generated great 
interest over the years because of their ability to generate a rich 
spectrum of very complex patterns of behavior out of sets of relatively 
simple underlying rules. Moreover, they appear to capture many 
essential features of complex self-organizing cooperative behavior 
observed in real systems. 

Although much of the theoretical work with CA has been confined to 
mathematics and computer science, there have been numerous 
applications to physics, biology, chemistry, biochemistry, and geology, 
among other disciplines. Some specific examples of phenomena that 
have been modeled by CA include fluid and chemical turbulence, plant 
growth and the dendritic growth of crystals, ecological theory, DNA 
evolution, the propagation of infectious diseases, urban social dynamics, 
forest fires, and patterns of electrical activity in neural networks. CA 
have also been used as discrete versions of partial differential equations 
in one or more spatial variables. 

The best sources of information on CA are conference proceedings and 
collections of papers, such as the one's edited by Boccara [42], Gutowitz 
[43], and Wolfram [44,45]. An excellent review of how CA can be used 
to model physical systems is given by Toffoli and Margolus [46]. 

While there is an enormous variety of particular CA models - each 
carefully tailored to fit the requirements of a specific system - most CA 
models usually possesses these five generic characteristics: 

• discrete lattice of cells: the system substrate consists of a one-, two- or 
three-dimensional lattice of cells 

• homogeneity: all cells are equivalent 

• discrete states: each cell takes on one of a finite number of possible 
discrete states 

• local interactions: each cell interacts only with cells that are in its 
local neighborhood 
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discrete dynamics: at each discrete unit time, each cell updates its 
current state according to a transition rule taking into account 
the states of cells in its neighborhood 

Example #1: One-dimensional CA 

For a one-dimensional CA, the value of the ith cell at time t - denoted 
by Cj(t) - evolves in time according to a "rule" F that is a function of Cj(t) 
and other cells that are within a range r (on the left and right) of q(t): 

ct(t) = F[Ci_r(t -1), Ci_r+l (t-1),..., ci+r_x (t-1), ci+r{t - 1)]. 

Since each cell takes on one of k possible values - that is, 
Cj e {0, l,...,k— 1}- the rule F is completely defined by specifying the 
value assigned to each of the k2r+I possible (2r+l)-tuple configurations 
for a given range-r neighborhood: 

Ci-r(t-l) ... Ci(t-\) ... Cjtr(f-1) Cj(t) 
0 0 0 F(0,0,...,0) 
0 0 1 F(0,0,...,1) 
* • * 

k k k F(k,k,...,k) 

Since F itself assigns any of k values to each of the k2r+1 possible 
(2r+l)-tuples, the total number of possible rules is an exponentially 
increasing function of both k and r. For the simplest case of nearest 
neighbors (range r=l) and k=2 (c; = 0 or 1), for example, there are 
28=256 possible rules. Increasing the number of values each cell can 
take on to k=3 (but keeping the radius at r=l) increases the rule-space 
sizetoS33-?»^1 . 

Figure 87 shows the time evolution of a nearest-neighbor (radius r=l) 
rule where c is equal to either 0 or 1. The row of eight boxes at the top 
of the figure shows the explicit rule-set, where - for visual clarity - a box 
has been arbitrarily colored "black" if the value c=l and "white" if c=0. 
For each combination of three adjacent cells in generation 0, the rule F 
assigns a particular value to the next-generation center cell of the 
triplet. Beginning from an initial state (at time=0) consisting of the 
value zero everywhere except the center site, that is assigned the value 
1, F is applied synchronously at each successive time step to each cell of 
the lattice. Each generation is represented by a row of cells and time is 
oriented downwards. The first image shows a blowup of the first five 
generations of the evolution. The second shows 300 generations. The 
figure illustrates the fact that simple rules can generate considerable 
complexity. 
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The space-time pattern generated from a single nonzero cell by this 
particular rule has a number of interesting properties. For example, it 
consists of a curious mixture of ordered behavior along the 
left-hand-side and what appears to be disordered behavior along the 
right-hand-side, separated by a corrugated boundary moving towards 
the left at a "speed" of about 1/4 cells per "clock" tick. In fact, it can be 
shown that, despite starting from an obviously non-random initial state 
and evolving according to a fixed deterministic rule, the temporal 
sequence of vertical values is completely random. Systems having the 
ability to deterministically generate randomness from non-random 
input are called autoplectic systems. 

In general, the behavior of CA is strongly reminiscent of the kinds of 
behavior observed in continuum dynamical systems, with simple rules 
yielding steady-state behaviors consisting of fixed points or limit cycles, 
and complex rules giving rise to behaviors that are analogous to 
deterministic chaos. In fact, there is extensive empirical evidence 
suggesting that patterns generated by all (one-dimensional) CA 
evolving from disordered initial states fall into one of only four basic 
behavioral classes: 

• Class 1: evolution leads to a homogenous state, in which all cells 
eventually attain the same value 

• Class 2: evolution leads to either simple stable states or periodic 
and separated structures 

• Class 3: evolution leads to chaotic nonperiodic patterns 

• Class  4:  evolution   leads   to   complex,   localized  propagating 
structures 

All CA within a given class yield qualitatively similar behavior. While the 
behaviors of rules belonging to the first three rule classes bear a strong 
resemblance to those observed in continuous systems - the 
homogenous states of class 1 rules, for example, are analogous to 
fixed-point attracting states in continuous systems, the asymptotically 
periodic states of class 2 rules are analogous to continuous limit cycles 
and the chaotic states of class 3 rules are analogous to strange attractors 
- the more complicated localized structures emerging from class 4 rules 
do not appear to have any obvious continuous analogues (although 
such structures are well characterized as being soliton-like in their 
appearance). 
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Figure 87. Example of a one-dimensional CA 
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Example #2: Conwayfs Life 

"Its probable, given a large enough Life space, initially in a random state, that 
after a long time, intelligent self-reproducing animals will emerge and populate 
some parts of the space."  -John H. Conway 

Perhaps the most widely known CA is the game of Life, invented by 
John H. Conway, and popularized extensively by Martin Gardner in his 
"Mathematical Games" department in Scientific American in the early 
1970s. 

Life is "played" using the 9 nearest neighboring sites of any site on a 
two-dimensional lattice, and consists of (1) seeding a lattice with some 
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pattern of "live" and "dead" cells, and (2) simultaneously (and 
repeatedly) applying the following three rules to each cell of the lattice 
at discrete time steps: 

• Birth: replace a previously dead cell with a live one if exactly 3 of 
its neighbors are alive 

• Death: replace a previously live cell with a dead one if either (1) 
the living cell has no more than one live neighbor (i.e., it dies of 
isolation), or (2) the living cell has more than three neighbors 
(i.e., it dies of overcrowding) 

• Survival: retain living cells if they have either 2 or 3 neighbors 

One of the most intriguing patterns in Life is an oscillatory propagating 
pattern known as the "glider." Shown on the left-hand-side of figure 88, 
it consists of 5 "live" cells and reproduces itself in a diagonally displaced 
position once every four iterations. When the states of Life are 
projected onto a screen in quick succession by a fast computer, the 
glider gives the appearance of "walking" across the screen. The 
propagation of this pseudo-stable structure can also be seen as a 
self-organized emergent property of the system. The right-hand-side of 
figure 88 shows a still-frame in the evolution of a pattern known as a 
"glider-gun," which shoots-out a glider once every 30 iteration steps. 

Figure 88. Glider patterns in Conway's Life 
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What is remarkable about this very simple appearing rule is that one 
can show that it is capable of universal computation. This means that 
with a proper selection of initial conditions (i.e., the initial distribution 
of "live" and "dead" cells), Life can be turned into a general purpose 
computer. This fact fundamentally limits the overall predictability of 
Life's behavior. 

The well known Halting Theorem, for example, asserts that there 
cannot exist a general algorithm for predicting when a computer will 
halt its execution of a given program [47]. Given that Life is a universal 
computer - so that the Halting Theorem applies - this means that one 
cannot, in general, predict whether a particular starting configuration 
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of live and dead cells will eventually die out. No shortcut is possible, 
even in principle. The best one can do is to sit back and patiently await 
Life's own final outcome. 

Put another way, this means that if you want to predict Life's long-term 
behavior with another "model" or by using, say, a partial differential 
equation, you are doomed to fail from the outset because its long-term 
behavior is effectively unpredictable. Life - like all computationally 
universal systems - defines the most efficient simulation of its own 
behavior. 

Example #3: Lattice Gases 

Lattice gases are micro-level rule-based simulations of macro-level fluid 
behavior. Lattice-gas models provide a powerful new tool in modeling 
real fluid behavior. The idea is to reproduce the desired macroscopic 
behavior of a fluid by modeling the underlying microscopic dynamics. 

It can be shown that three basic ingredients are required to achieve an 
emergence of a suitable macrodynamics out of a discrete microscopic 
substrate: (1) local thermodynamic equilibrium, (2) conservation laws, 
and (3) a "scale separation" between the levels at which the microscopic 
dynamics takes place (among kinetic variables living on a micro-lattice) 
and the collective motion itself appears (defined by hydrodynamical 
variable on a macro-lattice). Another critical feature is the symmetry of 
the underlying lattice. 

Figure 89. Two-dimensional lattice-gas simulation of a fluid 

time = 0 time =200 time =500 

While there are many variants of the basic model, one can show that 
there is a well-defined minimal set of rules that define a lattice-gas 
system whose macroscopic behavior reproduces that predicted by the 
Navier-Stokes equations36 exactly. In other words, there is critical 
"threshold" of rule size and type that must be met before the 
continuum fluid behavior is matched, and once that threshold is 

36 The Navier-Stokes equations are a set of analytically intractable coupled nonlinear 
partial differential equations describing fluid flow. 
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reached the efficacy of the rule-set is no longer appreciably altered by 
additional rules respecting the required conservation laws and 
symmetries. 

Figure 89 shows a few snapshots of the evolution of a two-dimensional 
lattice gas starting from an initial condition in which there is a tightly 
packed region of particles at the center of the lattice. Notice how this 
central region expands rapidly outward, and is very reminiscent of the 
effect a dropped stone has on an initially stagnant pool of water. The 
most striking feature is the circular sound wave, which is circular despite 
the fact that the microscopic dynamics takes place on a square lattice. 
The lattice gas "rules" thus force a symmetry that is not present in the 
microscopic dynamics to emerge on the macro-scale. 

Example #4: Collective Behavior in Higher Dimensions 

Chate and Manneville37 have examined a wide variety of cellular 
automata that live in dimensions four, five and higher. They found 
many interesting rules that while being essentially featureless locally, 
nonetheless show a remarkably ordered global behavior. 

Figure 90, for example, plots the probability that a cell has value 1 at 
time t+1 - labeled Pt+, - versus the probability that a cell had value 1 at 
time t - labeled Pt - four a particular four dimensional cellular 
automaton rule. The rule itself is unimportant, as there are many rules 
that display essentially the same kind of behavior. The point is that 
while the behavior of this rule is locally featureless - its space-time 
diagram would look like static on a television screen - the global density 
of cells with value 1 jumps around in quasi-periodic fashion. We 
emphasize that this quasi-periodicity is a global property of the system, 
and that no evidence for this kind of behavior is apparent in the local 
dynamics. 

Figure 90. Collective behavior of a four dimensional CA 
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37     H. Chate and P. Manneville, Europhysc Letters, Volume 14, 1991, 409. 
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Appendix B: A Brief Primer  on  Genetic 
Algorithms 

Genetic algorithms (GAs) are a class of heuristic search methods and 
computational models of adaptation and evolution based on natural 
selection. 

In nature, the search for beneficial adaptations to a continually 
changing environment (i.e., evolution) is fostered by the cumulative 
evolutionary knowledge that each species possesses of its forebears. This 
knowledge, which is encoded in the chromosomes of each member of a 
species, is passed from one generation to the next by a mating process 
in which the chromosomes of "parents" produce "offspring" 
chromosomes. 

GAs mimic and exploit the genetic dynamics underlying natural 
evolution to search for optimal solutions of general combinatorial 
optimization problems. They have been applied to the Traveling 
Salesman Problem, VLSI circuit layout, gas pipeline control, the 
parametric design of aircraft, neural net architecture, models of 
international security, and strategy formulation. 

While their modern form is derived mainly from John Holland's work 
in the 1960s [24], many key ideas such as using "selection of the fittest" 
like population-based selection schemes and using binary strings as 
computational analogs of biological chromosomes, actually date back to 
the late 1950s. More recent work is discussed by Goldberg [25], Davis 
[26] and Michalewicz [27] and in conference proceedings edited by 
Forrest [28]. A comprehensive review of the current state-of-the-art in 
genetic algorithms is given by Mitchell [29]. 

The basic idea behind GAs is very simple. Given a "problem" - which 
can be as well-defined as maximizing a function over some specified 
interval or as seemingly ill-defined and open-ended as evolution itself, 
where there is no a-priori discernible or fixed function to either 
maximize or minimize - GAs provide a mechanism by which the 
solution space to that problem is searched for "good solutions." Possible 
solutions are encoded as chromosomes (or, sometimes, as sets of 
chromosomes), and the GA evolves one population of chromosomes 
into another according to their fitness by using some combination 
(and/ or variation) of the genetic operators of crossover and mutation. 
A solution search space together with a fitness function is called a 
fitness landscape. Eventually, after many generations, the population 
will, in theory, be composed only of those chromosomes whose fitness 
values are clustered around the global maximum of the fitness 
landscape. 
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Genetic Operators 

Each chromosome is visually defined to be a bit-string, where each bit 
position (or "locus") takes on one of two possible values (or "alleles"), 
and can be imagined as representing a single point in the "solution 
space." The fitness of a chromosome effectively measures how "good" a 
solution that chromosome represents to the given problem. Aside from 
its intentional biological roots and flavoring, GAs can be thought of as 
parallel equivalents of more conventional serial optimization 
techniques: rather than testing one possible solution after another, or 
moving from point to point in the solution phase-space, GAs move from 
entire populations of points to new populations. 

Figure 91. Schematic representation of the basic GA operators 
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Figure 91 shows examples of the three basic genetic operations of 
reproduction, crossover and mutation, as applied to a population of 8-bit 
chromosomes. Reproduction makes a set of identical copies of a given 
chromosome, where the number of copies depends on the 
chromosome's fitness. The crossover operator exchanges subparts of 
two chromosomes, where the position of the crossover is randomly 
selected, and is thus a crude facsimile of biological sexual 
recombination between two single-chromosome organisms. The 
mutation operator randomly flips one or more bits in the chromosome, 
where the bit positions are randomly chosen. The mutation rate is 
usually chosen to be small. 

While reproduction generally rewards high fitness, and crossover 
generates new chromosomes whose parts, at least, come from 
chromosomes with relatively high fitness (this does not guarantee, of 
course, that the crossover-formed chromosomes will also have high 
fitness; see below), mutation seems necessary to prevent the loss of 
diversity at a given bit-position. For example, were it not for mutation, a 
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population might evolve to a state where the first bit-position of each 
chromosome contains the value 1, with there being no chance of 
reproduction or crossover ever replacing it with a 0. 

The Basic GA Recipe 

Although GAs, like CA, come in many different flavors, and are usually 
fine-tuned in some way to reflect the nuances of a particular problem, 
they are all more or less variations of the following basic steps: 

Step 1: begin with a randomly generated population of 
chromosome-encoded "solutions" to a given problem 

Step 2: calculate the fitness of each chromosome, where fitness is 
a measure of how well a member of the population performs at 
solving the problem 

Step 3: retain only the fittest members and discard the least fit 
members 

Step 4: generate a new population of chromosomes from the 
remaining members of the old population by applying the 
operations reproduction, crossover, and mutation (see figure 91) 

Step 5: calculate the fitness of these new members of the 
population, retain the fittest, discard the least fit, and re-iterate 
the process 

Example: Function Maximization 

As a concrete example, suppose our problem is to maximize the fitness 
function f(x) = x2, using six 6-bit chromosomes of the form 
C=(cj,c2,...,c6), where each q is equal to either 0 or 1. C's fitness, f(C), is 
determined by first converting its binary representation into a base-10 
equivalent value and squaring: f(C)=(c,+2c2+22c3+23c4+24c5++25c6)

2. 

The first step is to construct six random bit-strings representing the 
initial population: 

Cj = (101101) C2= (010110) C3= (111001) 

C4= (101011) C5= (010001) C6= (011101) 

These chromosomes have fitness values of 2025, 484, 3249, 1849, 289 
and 841, respectively. The average fitness is 1456. By luck of the 
fitness-scaled draw, where the number of copies of a given chromosome 
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is determined according to its fitness, scaled by the average fitness of 
the entire population, three copies of C3 are made for the next 
population (owing to its relatively high fitness), one copy each for 
chromosomes C,, C4 and C6 and none for the remaining chromosomes. 
These copies form the mating population. 

Next, we randomly pair up the new chromosomes, and perform the 
genetic crossover operation at randomly selected bit-positions - 
chromosomes Cjand C4 exchange their last three bits, C2 and C6 

exchange their last four bits, and C3 and C5 exchange their last bit: 

C, exchange with C4 at bit 3 (101.101) x (111.001) (101001) 

Cj exchange with C6 at bit 2 (11.1001) x (01.1101) (111101) 

C3 exchange with C5 at bit 5 (11100.1) x (10101.1) (111001) 

C4 exchange with Cj at bit 3 (111.001) x (101.101) (111101) 

C5 exchange with C3 at bit 5 (10101.1) x (11100.1) (101011) 

C6 exchange with C2 at bit 2 (01.1101) x (11.1001) (011001) 

Finally, we mutate each bit of the resulting chromosomes with some 
small probability - say pmutation=0.05. In our example we find that values 
of the 5th bit in C4 and 6th bit in C5 are flipped. The resulting strings 
make up our 2nd generation chromosome population. By chance, the 
first loop through the algorithm has successfully turned up the most-fit 
chromosome - C4=(llllll) —> f(C4) = 632 = 3969 - but in general the 
entire procedure would have to be repeated many times to approach 
the "desired" solution. 

The table below summarizes the above steps: 

Initial 
Population 

Initial 
Fitness 

Expected 
Copies 

Actual 
Copies 

Mating 
Population 

Crossover 
Operation1 

Mutation 
Operation 

New 
Fitness 

(101101) 2025 1.4 1 (101101) (134)->(101001) (101001) 1681 

(010110) 484 0.3 0 (111001) (226)->(111101) (111101) 3481 

(111001) 3249 2.2 3 (111001) (355)->(111001) (111001) 3249 

(101011) 1849 1.3 1 (111001) (431)->(111101) (111111) 3969 

(010001) 289 0.2 0 (101011) (553)->(101011) (101010) 1764 

(011101) 841 0.6 1 (011101) (622)->(011001) (011001) 625 
1      The crossover operator (xyz) means that chromosomes Cx and C2 exchange bits 
at the Vth bit. 

The Fitness Landscape 

A solution search space, x, together with a fitness function, f(x), make 
up what is called a fitness landscape. The term "landscape" comes from 
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visualizing a three-dimensional geographical landscape consisting of 
heights h=f(x,y) of a two-dimensional location x=(x,y). Particular 
problems, of course, may involve an arbitrary number of dimensions, 
but it is still helpful to keep this simple image in mind. The term 
"fitness" comes from Darwinian biology, and refers to the fitness of an 
individual to survive as a function either of its phenotype (or higher-level 
properties and/or behaviors) or its genotype (or lower-level genetic 
code). 

Biological fitness is generally very difficult to define since it is usually a 
complicated (and changing!) function of the interactions between an 
organism and other organisms and interactions between the organism 
and its environment. In a biological context and/or biology-based 
setting (such as in studies of artificial life), the fitness landscape is also 
often referred to as an adaptive landscape. Other "fitness functions," 
which, depending on the particular problem, may be considerably 
easier to define than their biological cousins, include energy and 
free-energy landscapes from physics and chemistry, and cost (or 
objective) functions from combinatorial optimization problems in 
computer science. 

Figure 92. Sample forms of fitness landscapes 

(c) 

As our simple geographical landscape metaphor might suggest, a variety 
of fitness landscapes are possible, each with their own strengths and 
weaknesses when it comes to "submitting" to a GA solution: completely 
flat landscapes, landscapes with a single isolated minimum and/or 
maximum, landscapes having several minima and/or maxima with 
equal heights, or landscapes with many unequal and irregularly spaced 
local minima and/or maxima. 

Since GAs, like other combinatorial optimization schemes (such as 
simulated annealing), depend essentially on their "hill-climbing" ability to 
ascend (or descend) towards the desired global maximum (or 
minimum), how successful the climb - and hence, the approach to the 
solution - will be, depends on what the landscape looks like. What a 
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given landscape looks like, in turn, depends strongly on its metric; that 
is, on the function d=d(x,x') that is used to measure the distance 
between any two points x and x'. Since GAs tend to keep nearby bits 
near each other, embedded correlations among subsets of a 
chromosome's genes can sometimes be exploited to produce a "natural 
ordering" for the given landscape. 

Landscapes with a single smoothly increasing "bump,"' such as the one 
shown in figure 92-a, for example, are usually amenable to any 
systematic climb towards larger values. On the other hand, landscapes 
with a single isolated maximum that sits on an otherwise even-leveled 
surface may not be so easy to "solve," because at no point on the surface 
is there a clue as to which direction to proceed in to move towards the 
maximum. More "rugged" landscapes, such as those shown in figures 
92-b and 92-c, with their multiple, and in the case of figure 92-c, 
irregularly spaced and sized, local maxima, may present even greater 
challenges to "hill-climbing" methods. An excellent review of 
optimization on rugged landscapes is given by Palmer [48]. Kauffman 
([49,50]) discusses the biological implications of rugged fitness 
landscapes. 

How Do GAs Work? 

While GAs are very simple to describe and implement on a computer, 
their behavior can be quite complex. There are a number of 
fundamental questions concerning how GAs work, not all of which have 
been completely answered. The first, and obvious, question is how do 
they manage to work at all? Given the vast number of possible 
genotypes of a size N "solution" (=2N), it is not immediately clear why 
any finite search-strategy - be it serial, parallel, hill-climbing or whatever 
- should ever consistently come close to the desired solution in a 
reasonable time, particularly for large N. Since the efficacy of an 
optimization scheme depends strongly on the fitness landscape, one 
would also like to characterize the kinds of fitness landscapes that are 
most amenable to a GA solution. It is also important to explore ways in 
which GAs differ from more traditional hill-climbing methods like 
gradient-ascent. Are all such methods, GAs included, equally adept at 
"solving" the same sorts of problems? Or are different methods best 
suited for specific kinds of problems? If so, how are these problems, and 
presumably their fitness landscapes, different from one another? While 
it would take us too far afield to explore these and other important 
questions in any great depth, we will briefly discuss a notion that most 
formal studies of the theory behind GAs begin with: the building-block 
hypothesis. 
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The Building-Block Hypothesis 

An heuristic explanation of why GA work - called the building-block 
hypothesis [25, 24] - is based on the idea that good solutions tend to be 
formed out of sets of good building-blocks (or Schemas). GAs discover 
these solutions by assigning higher fitness-levels to - and therefore 
tending to retain, over the course of successive generations - sets of 
strings containing good Schemas. 

By schema, we mean templates, or forms for particular kinds of strings. 
For example, the schema S=(1****0), where * is a "wildcard" that 
stands for either bit-value 0 or 1, represents the template for all length-6 
chromosomes whose first bit ß_l=l and last bit ß_6=l. In this case, since 
the schema contains one fixed bit and the distance between the outer 
most fixed bits is 5, S is said to be an order-1 schema with defining length 
5=5. 

The above example, in which we used length-6 chromosomes to 
maximize the function f(x)=x2, illustrates why schema can be thought of 
as simple building-blocks of "fit" genes. In that example, any 
chromosome of the form (1*****) js obviously more fit than (0*****), 
and thus forms a basic building block out of which the best "solutions" 
must be constructed. 

Now, to be sure, not every possible subset of the solution-space can be 
described as a schema. Simple counting shows that a length-N 
chromosome can have 2N possible configurations, and therefore 2 
possible subsets, but only 3N different Schemas. Nonetheless, it is a 
central axiom of the building-block hypothesis that it is precisely the set 
of Schemas that are effectively being processed by GAs. 

The schema population can be estimated using a simple mean-field-like 
argument. Let s represent a schema in a size-K population P(t) at time t, 
and Z(P,t) instances of the schema at time t. Let f(s) be the fitness of 
the string s, fg be the average fitness of instances of s at time t, and 
f = K~ 2/ be the average fitness of the population. Then the expected 
number of instances of s at time t+1, Z(P,t+l), is equal to 

z{P,t+1) = X 42 =J-%eSM=f^z(p,t), 
seS J J 

since, by definition, /s = Z5S 5./(s)/Z(P, t)  . 

This basic difference equation - known as the Schema Theorem [24] - 
expresses the fact that the sample representation of schemas whose 
average fitness remains above average relative to the whole population 
increases exponentially over time. As it stands, however, this equation 
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addresses only the reproduction operator, and ignores effects of both 
crossover and mutation. 

A lower bound on the overall effect of crossover, which can both create 
and destroy instances of a given schema, can be estimated by calculating 
the probability, pc(S), that crossover leaves a schema S unaltered. Let pc 

be the probability that the crossover operation will be applied to a 
string. Since a schema S will be destroyed by crossover if the operation 
is applied anywhere within its defining length, the probability that S will 
be destroyed is equal to pc*8(S)/(K-l), where 8(S) is the defining 
length of S. Hence, the probability of survival ps=l-pc*8(S)/(K-l), and 
the expression for Z(P,t+l) takes the updated form: 

Z{P,t+\)>fj[\-pc^)z{P,t) 
f 

Finally, in order to also take into account the mutation operator, we 
note that the probability that a schema S survives under mutation is 
given by pM(S)=(l-pm)0(S>, where pm is the single-bit mutation probability 
and 0(S) is the number of fixed-bits (i.e., the order) of S. With this we 
can now express the Schema Theorem that (partially) respects the 
operations of reproduction, crossover and mutation: 

Z(Pj+l)>ff(l-pc^){(l-pmfW}z(P,t) 

We conclude from this basic theorem that the sample representation of 
low-order Schemas with above average fitness relative to the fitness of 
the population increases exponentially over time. (The fact that we 
have ignored possible crossover and/or mutation induced creations of 
previously nonexisting instances of Schemas means only that the right 
hand side of the above equation represents a lower bound; the 
conclusion remains generally valid, as it stands.) 

Dueling Parasites 

We outline a potentially powerful generalization of the basic genetic 
algorithm introduced by Hillis [6], which may have a natural 
application to the modeling of combat. 

Conventional genetic algorithms search for "solutions" to problems by 
"evolving" large populations of approximate solutions, each candidate 
solution represented by a chromosome. The genetic algorithm evolves 
one population of chromosomes into another according to their fitness 
using various genetic operators (such as crossover and mutation), and, 
eventually, after many generations, the population comes to consist 
only of the "most-fit" chromosomes. 
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This basic recipe is useful for finding near-optimal solutions for many 
kinds of problems. One of the major difficulties that all solution schemes 
for solving combinatorial optimization problems must contend with, 
however, is the classical problem of the search space containing local 
optima: once a search algorithm finds what it "thinks" is the global 
optimal solution, it is generally difficult for it to find ways to not be 
"locked into" the local optimum. 

Hillis attacks this problem by exploiting host-parasite interactions 
among two coupled genetic algorithm populations. To illustrate the 
idea, consider his testbed system, which consists of finding a sorting 
algorithm for elements of a set of fixed size that requires the smallest 
number of comparisons and exchanges to be made among the 
elements. The overall problem is to design an efficient sorting network, 
which is a sorting algorithm in which the sequence of comparisons and 
exchanges is made in a predetermined order. A candidate sorting 
network, once defined (by a chromosome), is easy to test. 

Now, Hillis' idea is to set up not one but two interacting genetic 
algorithm populations, one population consisting of "solutions," or 
sorting programs (the hosts), and the other consisting of "sorting 
problems" (the parasites). Having the two populations interact 
effectively sets up an "arms-race" between the two populations. While 
the hosts are trying to find better and better ways to sort the problems, 
the parasites are trying to make the hosts less and less adept at sorting 
the problems by making the problems "harder." 

The interaction between the two populations dynamically alters the 
form of the fitness function. Just as the hosts reach the top of a fitness 
"hill," the parasites deform the fitness landscape so that the hill 
becomes a "valley" that the hosts are then forced to find ways to climb 
out of and start looking for new peaks. When the population of 
programs finally reaches a hill that the parasites cannot find a way to 
turn into a valley, the combined efforts of the co-evolving hosts and 
parasites has found a global optimum. Thus, the joint, coupled, 
population pools are able to find better solutions quicker than the 
evolutionary dynamics of populations consisting of sorting programs 
alone. 

The application to combat modeling is conceptually straightforward. 
The idea is to apply genetic algorithms not to just one side of a conflict, 
or to use genetic algorithms to find "optimal" combat tactics for fixed 
sets of constraints and environments, but to use joint, coupled, pools of 
populations, one side of which represents a set of tactics or strategies to 
deal with specific scenarios, and the other side of which seeks ways to 
alter the environment in ways that make it harder and harder for those 
tactics or strategies to work. 
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Appendix C: Source Code for ISAAC 

Below is the ANSI C source code for version 1.8.4 of ISAAC_.CE (i.e., 
the Care Engine, see Table 4). Screen and graphics functions are those 
defined in graph.h of Microsoft's Visual C/C++ compiler for DOS 
(vl.52). Note that to run ISAAC using the parameter values appearing 
in the header file ISAACh, ISAAC requires 8-16 MB of extended 
memory and must thus be compiled using a DOS-extender such as 
Pharlap's SDK 286 \DOS-Extender. 

Header File 

// Version number 
#define ISAACVERSION "ISAAC / Version 1.8.4" 

// maximum size of square battlefield 
#define MAXFIELDSIZE151 

// maximum ISAACA sensor range 
#define MAXSENSORRANGE 10 

// maximum possible interpoint distance 
#define MAXINTERPOINTDIST (int)(1.414214 * MAXFIELDSIZE) 

// maximum number of local commanders 
#define MAXCOMMANDNUM 25 

// maximum number of ISAACAs that can be under 
// the command of a local commander 
#define MAXUNDERCOMMAND100 

// maximum number of ISAACs on either side 
#define MAXISAACNUM 501 

// maximum number of squads per side 
#define MAXSQUADNUM11 

// maximum number of enemy ISAACs that can be 
// located in the neighborhood of an ISAACA 
#define MAXNEIGHBORNUM 2*MAXISAACNUM+1 

// maximum number of 'obstacles' in battlefield 
#define TERRAINMAXNUM 25 

// maximum size of clusters to consider for 
// calculating distribution 
#define MAXCLUSTERSIZE 2*MAXISAACNUM+1 
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Structures 
/  /**A*AAAAAA*A*iUAAAAA***AAAAA*AA**** 

// 
// -statistics 
// - red_GC_parameters 
// -blue_GC_parameters 
// - red_command_parameters 
// - blue_command_parameters 
// - batüe_parameters 
// - red_parameters 
// - blue_parameters 

summary statistics and measures 
red gloabl commander parameters 
blue global commander parameters 
red localcommander parameters 
blue localcommander parameters 
battlefield/ combat parameters 
red ISAACA force parameters 
blue ISAACA force parameters 

// 

struct statistics 

{ 
int stat_flag; 
int interpoint_flag; 
int max_faterpoint_dist; 
int max_G_dist; 
float RG_dist[MAXINTERPOINTDIST]; 
float BG_dist[MAXINTEEPOINTDIST]; 
float RR_Jnterpoint[MAXINTERPOINTDIST] 
float BB_interpoint[MAXINTERPOINTDIST]; 
float RB_interpoint[MAXINTERPOINTDIST] 

float RG_dist_ave; 
float BG_dist_ave; 
float RR_interpoint_ave; 
float BB_interpoint_ave; 
float RB_interpoint_ave; 
float RG_dist_adev; 
float BG_dist_adev; 
float RR_interpoint_adev; 
float BB_interpoint_adev; 
float RB_interpoint_adev; 
float RG_dist_sdev; 
float BG_dist_sdev; 
float RR_interpoint_sdev; 
float BB_interpoint_sdev; 
float RB_interpoint_sdev; 
float RG_dist_var; 
float BG_dist_var; 
float RR_interpoint_var; 
float BB_interpoint_var; 
float RB_interpoint_var; 
int entropy_flag; 
int block_xmin_l[17]; 
int block_xmax_l[17]; 
int block_ymin_l [17]; 
int block_ymax_l [17]; 
int block_xmin_2[65]; 
int block_xmax_2[65]; 
int block_ymin_2[65]; 
int bIock_ymax_2[65]; 
int block_xmin_3[257]; 
int block_xmax_3[257]; 
int block_ymin_3[257]; 
int block_ymax_3[257]; 
float red_entropy_l; 
float red_entropy_2; 
float red_entropy_3; 
float blue_entropy_l; 
float blue_entropy_2; 
float blue_entropy_3; 
float red_blue_entropy_l; 
float red_blue_entropy_2; 
float red_blue_entropy_3; 
int cluster_l_flag; 
int cluster_2_flag; 
int number_of_clusters_l; 
int number_of_clusters_2; 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA«AA»»»«****»AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

// =1 if statistics are to be computed, else 0 
// =1 if interpoint-dist to be calculated, else 0 
// maximum distance for which interpoint dist != 0 
// maximum distance for which ISAACA-goal dist != 0 
// distribution of red-blueflag distances 
// distribution of blue-redflag distances 
// distribution of red-red interpoint distances 

, // distribution of blue-blue interpoint distances 
|; // distribution of red-blue interpoint distances 
// average of distribution of red-blueflag distances 
// average of distribution of blue-redflag distances 
// average of distribution of RR interpoint distances 
// average of distribution of BB interpoint distances 
// average of distribution of RB interpoint distances 
// average deviation of dist of red-blueflag distances 
// average deviation of dist of blue-redflag distances 
// average deviation of dist of RR interpoint distances 
// average deviation of dist of BB interpoint distances 
// average deviation of dist of RB interpoint distances 
// standard deviation of dist of red-blueflag distances 
// standard deviation of dist of blue-redflag distances 
// standard deviation of dist of RR interpoint distances 
// standard deviation of dist of BB interpoint distances 
// standard deviation of dist of RB interpoint distances 
// variance of dist of red-blueflag distances 
// variance of dist of blue-redflag distances 
// variance of dist of RR interpoint distances 
// variance of dist of BB interpoint distances 
// variance of dist of RB interpoint distances 
// =1 if spatial entropy is to be calculated, else =0 
// ifh block x-min for 4x4 calc of entropy 
// ith block x-max for 4x4 calc of entropy 
// ith block y-min for 4x4 calc of entropy 
//ith block y-max for 4x4 calc of entropy 
//ith block x-min for 8x8 calc of entropy 
//ith block x-max for 8x8 calc of entropy 
//ith block y-min for 8x8 calc of entropy 
//ith block y-max for 8x8 calc of entropy 
// ith block x-min for 16x16 calc of entropy 
//ith block x-max for 16x16 calc of entropy 
//ith block y-min for 16x16 calc of entropy 
//ith block y-max for 16x16 calc of entropy 
// entropy measure of state using 4x4 array 
// entropy measure of state using 8x8 array 
// entropy measure of state using 16x16 array 
// entropy measure of state using 4x4 array 
// entropy measure of state using 8x8 array 

' // entropy measure of state using 16x16 array 
// entropy measure of state using 4x4 array 
// entropy measure of state using 8x8 array 
// entropy measure of state using 16x16 array 
// =1 if D=l clusters are to be found 
// =1 if D=2 clusters are to be found 
// total number of clusters (using D=l) 
// total number of clusters (using D=2) 
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int clusters_l[MAXCLUSTERSIZE+l]; 
int clusters_2[MAXCLUSTERSIZE+l]; 
float cluster_l_ave; 
float cluster_l_adev; 
float cluster_l_sdev; 
float cluster_l_var; 
float cluster_2_ave; 
float cluster_2_adev; 
float cluster_2_sdev; 
float cluster_2_var; 
int neighborsjflag; 
float red_in_red_ave[MAXSENSORRANGE+l]; 
float blue_in_red_ave[MAXSENSORRANGE+l]; 
float aU_in_red_ave[MAXSENSORRANGE+l]; 
float redJn_blue_ave[MAXSENSORRANGE+l]; 
float blue_in_blue_ave[MAXSENSORRANGE+l]; 
float all_in_blue_ave[MAXSENSORRANGE+l]; 
float red_in_red_adev[MAXSENSORRANGE+l]; 
float red_in_red_sdev[MAXSENSORRANGE+l]; 
float redJn_red_var[MAXSENSORRANGE+l]; 
float blue_in_red_adev[MAXSENSORRANGE+l]; 
float blue Jn_red_sdev[MAXSENSORRANGE+l]; 
float blue_in_red_var[MAXSENSORRANGE+l]; 
float aU_in_red_adev[MAXSENSORRANGE+l]; 
float aU_in_red_sdev[MAXSENSORRANGE+l]; 
float aU_in_red_var[MAXSENSORRANGE+l]; 
float redJnJblue_adev[MAXSENSORRANGE+l]; 
float red_in_blue_sdev[MAXSENSORRANGE+l]; 
float red_in_blue_var[MAXSENSORRANGE+l]; 
float blue_in_blue_adev[MAXSENSORRANGE+l]; 
float blue_in_blue_sdev[MAXSENSORRANGE+l]; 
float blue_in_blue_var[MAXSENSORRANGE+l]; 
float aUJn_blue_adev[MAXSENSORRANGE+l]; 
float aU_in_blue_sdev[MAXSENSORRANGE+l]; 
float aU_in_blue_var[MAXSENSORRANGE+l]; 
int center_mass_flag; 
float red_CM_x; 
float red_CM_y; 
float blue_CM_x; 
float blue_CM_y; 
float total_CM_x; 
float total_CM_y; 
int goal_stat_flag; 
float red_in_BG[6]; 
floatblue_in_RG[6]; 
int red_sensor_min; 
int blue_sensor_min; 
}; 

struct red_GC_parameters 
( 
intred_GC_flag; 
float swath_area[MAXCOMMANDNUM] [17]; 
float swath_den_AB[MAXCOMMANDNUM] [17]; 
float swath_denJB[MAXCOMMANDNUM][17]; 
float red_GC_fear_index; 
float red_gc_direction_wt[17]; 
int red_GC_direction_x[17]; 
int red_GC_direction_y[17]; 
int red_GC_goa!_x[MAXCOMMANDNUM]; 
int red_GC_goaI_y[MAXCOMMANDNUM]; 
int red_GC_help_x[MAXCOMMANDNUM]; 
int red_GC_help_y[MAXCOMMANDNUM]; 
float red_GC_w_alpha; 
float red_GC_w_beta; 
float red_GCJrac_R[3]; 
float red_GC_w_swath[4]; 
float red_GC_max_blue_factor; 
int red_GC_help_radius; 
float red_GC_health_ihresh; 
float red_GC_rel_health_thresh; 

// number of clusters of size i (using D=l) 
// number of clusters of size i (using D=2) 
// average cluster size 
// average deviation of cluster distribution 
// standard deviation of cluster distribution 
// variance of cluster distribution 
// average cluster size 
// average deviation of cluster distribution 
// standard deviation of cluster distribution 
// variance of cluster distribution 
// =1 if neighbor-routine is to be activated, else =0 
// average number of red ISAACAS in red at dist D 
// average number of blue ISAACAS in red at dist D 
// average number of ISAACAS in red at dist D 
// average number of red ISAACAS in blue at dist D 
// average number of blue ISAACAS in blue at dist D 
// average number of ISAACAS in blue at dist D 
// average deviation of red ISAACAS in red at dist D 
// standard deviation of red ISAACAS in red at dist D 
// variance number of red ISAACAS in red at dist D 
// average deviation of blue ISAACAS in red at dist D 
// standard deviation of blue ISAACAS in red at dist D 
// variance number of blue ISAACAS in red at dist D 
// average deviation of ISAACAS in red at dist D 
// standard deviation of ISAACAS in red at dist D 
// variance number of ISAACAS in red at dist D 
// average deviation of red ISAACAS in blue at dist D 
// standard deviation of red ISAACAS in blue at dist D 
// variance number of red ISAACAS in blue at dist D 
// average deviation of blue ISAACAS in blue at dist D 
// standard deviation of blue ISAACAS in blue at dist D 
// variance number of blue ISAACAS in blue at dist D 
// average deviation of ISAACAS in blue at dist D 
// standard deviation of ISAACAS in blue at dist D 
// variance number of ISAACAS in blue at dist D 
// =1 if center-of-mass is to be computed 
// x-coordinate of red's center-of-mass 
// y-coordinate of red's center-of-mass 
// x-coordinate of blue's center-of-mass 
// y-coordinate of blue's center-of-mass 
// x-coordinate of red and blue center-of-mass 
// x-coordinate of red and blue center-of-mass 
// =1 if goal-statistics to be calculated, else 0 
// number of red ISAACAs near blue flag (radius=l,..,5) 
// number of blue ISAACAs near red flag (radius=l,..,5) 
// minimum sensor range among red squads 
// minimum sensor range among blue squads 

// =1 if red ISAACAs have a global commander, else =0 
// contains 'swath' areas centered at (x,y) coor of LC 
// contains 'swath' densities of alive blue ISAACAs 
// contains 'swath' densities of injured blue ISAACAs 
// 0 <= f <= 1 = fear index; 0=no fear; 1= max fear 
// default weights for direction 'orders'(l-16) to LCs 
// x-coordinate of possible GC goals for LCs 
// y-coordinate of possible GC goals for LCs 
// x-coordinate of the ith red ISAACAs GC goal for LCs 
// y-coordinate of the ith red ISAACAs GC goal for LCs 
// x-coordinate of the LC that the ith LC is to 'help' 
// y-coordinate of the LC that the ith LC is to 'help' 
// global red command weight for alive blue density 
// global red command weight for injured blue density 
// fractions of range in which to weigh swath dens 
// swath weights to apply to the ith fractional radius 
// max number of blues = max_factor*(# under command) 
// defines area about LC in which the LC may seek help 
// threshold health for an LC to help another 
// threshold relative health for an LC to help another 
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struct blue_GC_parameters 

f 
intblue_GC_flag; 
float swath_area[MAXCOMMANDNUM][17]; 
float swath_den_AR[MAXCOMMANDNUM] [17]; 
float swath_den_IR[MAXCOMMANDNUM][17]; 
float blue_GC_fear_index; 
float blue_gc_direction_wt[17]; 
int blue_GC_direction_x[17]; 
int blue_GC_direction_y[17]; 
int blue_GC_goal_x[MAXCOMMANDNUM]; 
int blue_GC_goal_y[MAXCOMMANDNUM]; 
int blue_GC_help_x[MAXCOMMANDNUM]; 
int blue_GC_help_y[MAXCOMMANDNUM]; 
float blue_GC_w_alpha; 
float blue_GC_w_beta; 
float blue_GC_frac_R[3]; 
float blue_GC_w_swath[4]; 
float blue_GC_max_red_factor; 
int blue_GC_help_radius; 
float blue_GC_health_thresh; 
float blue_GC_rel_health_thrcsh; 

struct red_command_parameters 

{ 
short red_command_color; 
int num_red_commanders; 
int red_command_flag; 
int red_command_patch; 
int red_patch_choice_flag; 
int red_command_radius[MAXCOMMANDNUM]; 
int red_command_R[MAXCOMMANDNUM]; 
int red_command[MAXISAACNUM]; 
int reds_commander[MAXISAACNUM]; 
intred_ISAACA_commander[MAXCOMMANDNUM]; 
int red_ISAACA_label[MAXISAACNUM]; 

// =1 if blue ISAACAs have a global commander, else =0 
// contains 'swath' areas centered at (x,y) coor of LC 
// contains 'swath' densities of alive red ISAACAs 
// contains 'swath' densities of injured red ISAACAs 
// 0 <= f <= 1 = fear index; 0=no fear; 1= max fear 
// default weights for direction 'orders'(l-16) to LCs 
// x-coordinate of possible GC goals for LCs 
// y-coordinate of possible GC goals for LCs 
// x-coor of the ith blue ISAACAs GC goal for LCs 
// y-coor of the ith blue ISAACAs GC goal for LCs 
// x-coordinate of the LC that the ith LC is to 'help' 
// y-coordinate of the LC that the ith LC is to 'help' 
// global blue command weight for alive red density 
// global blue command weight for injured red density 
// fractions of range in which to weigh swath dens 
// swath weights to apply to the ith fractional radius 
// max number of reds = max_factor*(# under command) 
// defines area about LC in which the LC may seek help 
// threshold health for an LC to help another 
// threshold relative health for an LC to help another 

// number of red local commanders 
// =1 if red ISAACAs have local commanders, else =0 
// =1 if 3-by-3 patch; =2 if 5-by-5 
// if =0 then random patch choice, else min D to old 
// command radius; area = 9 (2r+l)-by-(2r+l) patches 
// command radius of 'entire' command swath 
// =2 if = local commander; 1 if under command; else 0 
// =0 if not under command; label of commander if yes 
// label (i=..irednum) of ith ISAACA's local commander 
// label (i=..inumcmders) of ith ISAACA; =0 if not cmd 
// number of red ISAACAs under ith local command intred_num_under_command[MAXCOMMANDNUM]; 

int red_num_under_command_0[MAXCOMMANDNUM]; // # of red ISAACAs under ith local command (t=0) 
int redJSAACA_under_command[MAXCOMMANDNUM] [MAXUNDERCOMMAND]; 

// label (i=l..irednum) of jth ISAACA under the ith local commander's command 
float red_min_command_dist; 
float red_w_to_commander_def; 
float red_w_obey_command_def; 
float red_w_to_commander; 
float red_w_obey_command; 
int red_command_goal_x[MAXCOMMANDNUM]; 
int red_command_goal_y[MAXCOMMANDNUM]; 
int red_prior_goalx[MAXCOMMANDNUM]; 
int red_prior_goaly[MAXCOMMANDNUM]; 
int red_local_goal_x[MAXISAACNUM]; 
intred_local_goaI_y[MAXISAACNUM]; 
float red_command_w_alpha[MAXCOMMANDNUM); 
float red_command_w_beta[MAXCOMMANDNUM]; 
float red_command_w_delta[MAXCOMMANDNUM]; 

// minimum ISAACA distance from their local commanders 
// red's relative weight to move towards commander 
// red's relative weight to comply with command order 
// red's relative weight to move towards commander 
// red's relative weight to comply with command order 
// x-coordinate for red ISAACAs local goal 
// y-coordinate for red ISAACAs local goal 
// x-coor of prior red 'command' patch goal 
// y-coor of prior red 'command' patch goal 
// x-coordinate of the ith red ISAACAs local goal 
// y-coordinate of the ith red ISAACAs local goal 
// local red command weight for (AR-AB)/(AR+IR) 
// local red command weight for (AR-IB)/(AR+IR) 
// local red command weight for (IR-AB)/(AR+IR) 

float red_command_w_gamma[MAXCOMMANDNUM]; // local red command weight for (IR-IB)/(AR+IR) 
float red_command_wlrdeffrMAXCOMMANDNUM]; 
float red_command_w2rdeff[MAXCOMMANDNUM]; 
float red_command_w3rdeff[MAXCOMMANDNUM] 
float red_command_w4rdeff [MAXCOMMANDNUM], 
float red_command_w5rdeff[MAXCOMMANDNUM], 
float red_command_w6rdeff[MAXCOMMANDNUM], 
int red_command_adv[MAXCOMMANDNUM]; 
int red_command_clus[MAXCOMMANDNUM]; 
int red_command_com[MAXCOMMANDNUM]; 
int red_command_srange[MAXCOMMANDNUM); 
intred_command_advrange[MAXCOMMANDNUM]; 
int red_subordinate_color_flag; 
float red_w_obey_GC_def[MAXCOMMANDNUM]; 
float red_w_obey_GC[MAXCOMMANDNUM]; 
float red_w_help_LC_def[MAXCOMMANDNUM]; 
float red_w_help_LC[MAXCOMMANDNUM]; 
float red_LC_health[MAXCOMMANDNUM]; 

// default weight for alive red —> alive red 
// default weight for alive red —> alive blue 
// default weight for alive red -> injured red 
// default weight for alive red —> injured blue 
// default weight for alive red —> red goal 
// default weight for alive red -> blue goal 
// local command red advance threshold 
// local command red cluster threshold 
// local command red combat threshold 
// local command red sensor range 
// range in which red # > threshold to advance 
// paint subordinate ISAACAs different color if =1 
// default weight for LC to obey global commander 
// weight for LC to obey global commander 
// weight for 'helping neighboring LCs (=l-w_goal) 
// weight for 'helping neighboring LCs (=l-w_goal) 
// the ith (i=l...numcmd) LCs health 
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struct blue_command_parameters 
{ 
short blue_command_color; 
int num_blue_commanders; 
int blue_command_flag; 
int blue_command_patch; 
int blue_patch_choice_flag; 
int blue_command_radius[MAXCOMMANDNUM]; 
int blue_command_R[MAXCOMMANDNUM]; 
int blue_command[MAXISAACNUM]; 
int blues_commander[MAXISAACNUM]; 
intblue_ISAACA_commander[MAXCOMMANDNUM]; 
int blue_ISAACAJabel[MAXISAACNUM]; 

// number of blue local commanders 
// =1 if blue ISAACAs have local commanders, else =0 
// =1 if 3-by-3 patch; =2 if 5-by-5 
// if =0 then random patch choice, else min D to old 
// command radius; area = 9 (2r+l)-by-(2r+l) patches 
// command radius of 'entire' command swath 
// =2 if = local commander; 1 if under command; else 0 
// =0 if not under command; label of commander if yes 
// label (i=l..ibluenum) of ith's local commander 
// label (i=..inumcmders) of ith ISAACA; =0 if not cmd 

int blue_num_under_command[MAXCOMMANDNUM]; // number of blue ISAACAs under ith local command 
int blue_num_under_command_0[MAXCOMMANDNUM];// # of blue ISAACAs under ith local command (t=0) 
mtblueJSAACA_imder_command[MAXCOMMANDNUM][MAXUNDERCOMMAND]; 

// label (i=l..ibluenum) of jth ISAACA under the ith local commander's command 
float blue_min_command_dist; 
float blue_w_to_commander_def; 
float blue_w_obey_command_def; 
float blue_w_to_commander; 
float blue_w_obey_command; 
int blue_command_goal_x[MAXCOMMANDNUM]; 
int blue_command_goal_y [MAXCOMMANDNUM]; 
int blue_prior_goalx[MAXCOMMANDNUM]; 
int blue_prior_goaly[MAXCOMMANDNUM]; 
int blue Jocal_goal_x[MAXISAACNUM); 
int blue_locaI_goal_y[MAXISAACNUM]; 

// minimum ISAACA distance from their local commanders 
// blue's relative weight to move towards commander 
// blue's relative weight to comply with command order 
// blue's relative weight to move towards commander 
// blue's relative weight to comply with command order 
// x-coordinate for blue ISAACAs local goal 
// y-coordinate for blue ISAACAs local goal 
// x-coor of prior blue 'command' patch goal 
// y-coor of prior blue 'command' patch goal 
// x-coordinate of the ith blue ISAACAs local goal 
// y-coordinate of the ith blue ISAACAs local goal 

float blue_command_w_alpha[MAXCOMMANDNUM]; // local bluecommand weight for (AB-AR)/(AB+IB) 
float blue_command_w_beta[MAXCOMMANDNUM]; // local bluecommand weight for (AB-IR)/(AB+IB) 
float blue_command_w_delta[MAXCOMMANDNUM]; // local bluecommand weight for (IB-AR)/ (AB+IB) 
float blue_command_w_gamma[MAXCOMMANDNUM];// local bluecommand weight for (IB-IR)/(AB+IB) 
float blue_command_wlbdeff[MAXCOMMANDNUM];   // default weight for alive red -> alive red 
float blue_command_w2bdeff[MAXCOMMANDNUM]; 
float blue_command_w3bdeff[MAXCOMMANDNUM]; 
float blue_command_w4bdeff[MAXCOMMANDNUM]; 
float blue_command_w5bdeff[MAXCOMMANDNUM]; 
float blue_command_w6bdeff[MAXCOMMANDNUM]; 
int blue_command_adv[MAXCOMMANDNUM]; 
int blue_command_clus[MAXCOMMANDNUM]; 
int blue_command_com[MAXCOMMANDNUM]; 
int blue_command_srange[MAXCOMMANDNUM]; 
int blue_command_advrange[MAXCOMMANDNUM]; 
int blue_subordinate_color_flag; 
float blue_w_obey_GC_def[MAXCOMMANDNUM]; 
float blue_w_obey_GC[MAXCOMMANDNUM]; 
float blue_w_help_LC_def[MAXCOMMANDNUM]; 
float blue_w_help_LC[MAXCOMMANDNUM]; 
float blue_LC_health[MAXCOMMANDNUM]; 

}; 

struct batUe_parameters 

( 
short goalcolor; 
short boxcolor; 
int squad_color_flag; 
int default_speed; 
int ioutdata; 
int ichoice; 
int isize; 
int initdist; 
intibatÜebox_red_length_squad[MAXSQUADNUM]; 
intibatÜebox_red_width_squad[MAXSQUADNUM]; 
intibatÜebox_red_cen_x_squad[MAXSQUADNUM]; 
intibattlebox__red_cen_y_squad[MAXSQUADNUM]; 
intibattlebox_blue_length_squad[MAXSQUADNUM]; 
intibattlebox_blue_width_squad[MAXSQUADNUM]; 
intibatÜebox_blue_cen_x_squad[MAXSQUADNUM]; 
intibattlebox_blue_cen_y_squad[MAXSQUADNUM]; 
int itermcond; 
int imove_selection; 
int max_combat_flag; 
int terrain_flag; 

// default weight for alive red -> alive blue 
// default weight for alive red -> injured red 
// default weight for alive red -> injured blue 
// default weight for alive red -> red goal 
// default weight for alive red —> blue goal 
// local command blue advance threshold 
// local command blue cluster threshold 
// local command blue combat threshold 
// local command red sensor range 
// range in which red # > threshold to advance 
// paint subordinate ISAACAs different color if =1 
// default weight for LC to obey global commander 
// weight for LC to obey global commander 
// weight for 'helping neighboring LCs (=l-w_goal) 
// weight for 'helping neighboring LCs (=l-w_goal) 
// the ith (i=l...numcmd) LCs health 

//=1 if squads are color-highlighted, else =0 
// =1 if run is FAST, =2 if run is SLOW 
// output: l=screen only; 2=file only; 3=both 
// run flag: l=run engine; 2=playback file 
// user specified battlefield size 
// initial force distribution flag 
// length of box containing initial distribution 
// width of box containing initial distribution 
// x-coodinate of the center of red's initial box 
// y-coodinate of the center of red's initial box 
// length of box containing initial distribution 
// width of box containing initial distribution 
// x-coodinate of the center of blue's initial box 
// y-coodinate of the center of blue's initial box 
// termination condition flag (l=goal; 2=none) 
// 1 = FIXED order; 2 = random order 
// 1=# of sim engmnts lmtd; 0=no limit 
// 1 = terrain to be used; 1 = no 
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int terrain_num; 
int terrain_size[TERRAINMAXNUM]; 
int terrain_center_x[TERRAINMAXNUM]; 
int terrain_center_y[TERRAINMAXNUM]; 
intioccupation[MAXFIELDSIZE]tMAXFIELDSIZE]; 
int reconstitution_flag; 
int red_fratricide_flag; 
int blue_fratricide_flag; 
int red_£rat_rad; 
int blue_frat_rad; 
int red_frat_count; 
int blue_frat_count; 
float red_frat_prob; 
float blue_frat_prob; 

1; 

struct red_parameters 

f 
int num_red_squads; 
int num_per_red_squad[MAXSQUADNUM]; 
int squad[MAXISAACNUM]; 
int display_red_squad; 
short redcolor; 
short squadcolor; 
int redgoalx; 
int redgoaly; 
int redxfMAXISAACNUM]; 
int redy[MAXISAACNUM]; 
int rseer[MAXISAACNUM]; 
int rseeb[MAXISAACNUM]; 
int rseercomm[MAXISAACNUM]; 
int rseebcomm[MAXISAACNUM]; 
int rstatus[MAXISAACNUM]; 
int ibinrfMAXISAACNUM]; 
float wlred[MAXISAACNUM]; 
float w2red[MAXISAACNUM]; 
float w3red[MAXISAACNUM]; 
float w4red[MAXISAACNUM]; 
float w5red[MAXISAACNUM]; 
float w6red[MAXISAACNUM]; 
int irednum; 
int irsrange[MAXISAACNUM]; 
int iredfrange[MAXISAACNUM]; 
int irsrange_squad[MAXSQUADNUM]; 
int iredfrange_squad[MAXSQUADNUM]; 
float zshotbluebyreddef [MAXISAACNUM]; 
float zshotbluebyreddef_squad[MAXSQUADNUM]; 
int iperred; 
float wlrdeff_a[MAXSQUADNUM]; 
float w2rdeff_a[MAXSQUADNUM]; 
float w3rdeff_a[MAXSQUADNUM]; 
float w4rdeff_a[MAXSQUADNUM]; 
float w5rdeff_a[MAXSQUADNUM]; 
float w6rdeff_a[MAXSQUADNUM]; 
float wlrdeff_i[MAXSQUADNUM]; 
float w2rdeffJ[MAXSQUADNUM]; 
float w3rdefH[MAXSQUADNUM]; 
float w4rdeff_i[MAXSQUADNUM]; 
float w5rdeff_i[MAXSQUADNUM]; 
float w6rdeff_i[MAXSQUADNUM]; 
float red_w_a_max[MAXISAACNUM]; 
float red_w_i_max[MAXISAACNUM]; 
float wlreddef_a[MAXISAACNUM]; 
float w2reddef_a[MAXISAACNUM]; 
float w3reddef_a[MAXISAACNUM]; 
float w4reddef_a[MAXISAACNUM]; 
float w5reddef_a[MAXISAACNUM]; 
float w6reddef_a[MAXISAACNUM]; 
float wlreddef_i[MAXISAACNUM]; 
float w2reddef_i[MAXISAACNUM]; 
float w3reddef_i[MAXISAACNyM); 
float w4reddeH[MAXISAACNUM]; 
float w5reddef_i[MAXISAACNUM]; 
float w6reddef_i[MAXISAACNUM]; 

// number of terrain block 
// radius of ith terrain block 
// x-coordinate of the the ith block's center 
// y-coordinate of the the ith block's center 
// =2 if terrain, 1 if occupied, else 0 
// if 0 then no reconstitution, else reconstitution on 
// =1 if red ISAACAs can accidentally kill red ISAACAs, else 0 
// =1 if blue ISAACAs can accidentally kill blue ISAACAs, else 0 
// radius surrounding targeted blue within which reds can be killed 
// radius surrounding targeted red within which blues can be killed 
// cummulative total of red fratricide 'hits' 
// cummulative total of blue fratricide 'hits' 
// probability that red is accidentally shot by red 
// probability that blue is accidentally shot by blue 

// number of red squads 
// number of ISAACAs in the ith red squad 
// number of the squad to which the ith ISAACA belongs 
// which red squad to show the parameters of on screen 
// color code for alive red ISAACAs 
// color code for highlighting individual squads 
// x coordinate of red goal 
// y coordinate of red goal 
// x-coordinate of ith red ISAAC 
// y-coordinate of ith red ISAAC 
// =1 if red sees red and =0 otherwise 
// =1 if red sees blue and =0 otherwise 
// =1 if red sees red via COMM link 
// =1 if red sees blue via COMM link 
// =1 if alive, 1 if injured, 0 if dead 
// number of blue isaacs in red isaac range 
// active weight for red —> alive red 
// active weight for red —> alive blue 
// active weight for red —> injured red 
// active weight for red —> injured blue 
// active weight for red —> red goal 
// active weight for red -> blue goal 
// total number of red ISAACS 
// red sensor range of ith ISAACA 
// red fire range of ith ISAACA 
// red sensor range of the ith squad 
// red fire range of the ith squad 
// probability that a red ISAAC shoots a blue 
// probability that a red ISAAC shoots a blue 
// input flag for initial personality type 
// default weight for alive red -> alive red 
// default weight for alive red —> alive blue 
// default weight for alive red —> injured red 
// default weight for alive red —> injured blue 
// default weight for alive red —> red goal 
// default weight for alive red —> blue goal 
// default weight for injured red —> alive red 
// default weight for injured red —> alive blue 
// default weight for injured red —> injured red 
// default weight for injured red —> injured blue 
// default weight for injured red —> red goal 
// default weight for injured red —> blue goal 
// maximum absolute value of default red alive weights 
// maximum absolute value of default red injrd weights 
// default weight for alive red —> alive red 
// default weight for alive red —> alive blue 
// default weight for alive red —> injured red 
// default weight for alive red —> injured blue 
// default weight for alive red —> red goal 
// default weight for alive red —> blue goal 
// default weight for injrd red —> alive red 
// default weight for injrd red —> alive blue 
// default weight for injrd red —> injured red 
// default weight for injrd red —> injured blue 
// default weight for injrd red —> red goal 
// default weight for injrd red -> blue goal 
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int iredmovecont; 
int iradv_a_squad[MAXSQUADNUM]; 
int iradv_i_squad[MAXSQUADNUM); 
int iradvrange_squad[MAXSQUADNUM]; 
int kdus_a_squad[MAXSQUADNUM]; 
int irclusJ_squad[MAXSQUADNUM]; 
int ircom_a_squad[MAXSQUADNUM]; 
int ircom_i_squad[MAXSQUADNUM]; 
int iradv_a[MAXISAACNUM]; 
int iradv_i[MAXISAACNUM]; 
int iradvrange[MAXISAACNUM]; 
int irdus_a[MAXISAACNUM]; 
int irdus_i[MAXISAACNUM]; 
int ircom_a[MAXISAACNUM]; 
int ircom_i[MAXISAACNUM]; 
int iradvrange_min; 
int iradvrange_max; 
int iradv_a_müi; 
int iradv_a_max; 
int iradvJLmin; 
int iradv_i_max; 
int irdus_a_min; 
int irclus_a_max; 
int irclus_i_min; 
int irclus_i_max; 
int ircom_a_min; 
int ircom_a_max; 
int ircom_i_min; 
int ircom_i_max; 
float zrfromrmindist_a_squad[MAXSQUADNUM]; 
float zrfromrgmtadist_a_squad[MAXSQUADNUM]; 
float zbfromrmtadist_a_squad[MAXSQUADNUM]; 
float zrn-omnnindist_i_squad[MAXSQUADNUM]; 
float zrfromrgmindisU_squad[MAXSQUADNUM); 
float zbfromnnindist_i_squad[MAXSQUADNUM); 
float zrfromrmindist_a[MAXISAACNUM); 
float zrfromrgmindist_a[MAXISAACNUM]; 
float zbfromnnindist_a[MAXISAACNUM]; 
float zrfromnnindist_i[MAXISAACNUM]; 
float zrn-omrgmindist_i[MAXISAACNUM]; 
float zbfrommundistj[MAXISAACNUM]; 
int iredmoverange_squad[MAXSQUADNUM]; 
int iredmoverange[MAXISAACNUM]; 
int red_max_eng_num[MAXISAACNUM]; 
int red_max_eng_num_squad[MAXSQUADNUM]; 
int red_COMM_flag; 
int ircommrange; 
float rcommweight; 
float rcommweight_def; 
float zrsscale[MAXISAACNUM]; 
int red_dock[MAXISAACNUM]; 
int red_max_r_time; 
int defense_flag; 
int alive_defense_squad[MAXSQUADNUM]; 
int mjrd_defense_squad[MAXSQUADNUM]; 
int alive_defense[MAXISAACNUM]; 
int injrd_defense[MAXISAACNUM]; 
int defense_clock[MAXISAACNUM]; 

struct blue_parameters 

{ 
int num_blue_squads; 
int num_per_blue_squad[MAXSQUADNUM]; 
int squad[MAXISAACNUM]; 
int display_blue_squad; 
short bluecolor; 
short squadcolor; 
int bluegoalx; 
int bluegoaly; 
int bluex[MAXISAACNUM]; 
int bluey[MAXISAACNUM]; 
int bseer[MAXISAACNUM]; 
int bseeb[MAXISAACNUM]; 

// red movement constraint flag 
// ith squad's red advance threshold 
// ith squad's injured red advance threshold 
// ith squad's range in which red # > threshold to advance 
// ith squad's alive red cluster threshold 
// ith squad's injured red cluster threshold 
// ith squad's alive red combat threshold 
//ith squad's injured red combat threshold 
// alive red advance threshold 
// injured red advance threshold 
// range in which red # > threshold to advance 
// alive red cluster threshold 
// injured red cluster threshold 
// alive red combat threshold 
// injured red combat threshold 
// min red advance threshold for random constraints 
// max red advance threshold for random constraints 
// min alive red advance threshold for ran constraints 
// max alive red advance threshold for ran constraints 
// min injrd red advance threshold for ran constraints 
// max injrd red advance threshold for ran constraints 
// min alive red cluster threshold for ran constraints 
// max alive red cluster threshold for ran constraints 
// min injrd red cluster threshold for ran constraints 
// max injrd red cluster threshold for ran constraints 
// min alive red combat threshold for ran constraints 
// max alive red combat threshold for ran constraints 
// min injrd red combat threshold for ran constraints 
// max injrd red combat threshold for ran constraints 
//ith squad's minimum distance of alive red from red 
// ith squad's minimum distance of alive red from red goal 
//ith squad's minimum distance of alive blue from red 
//ith squad's minimum distance of injured red from red 
//ith squad's minimum distance of injured red from red goal 
//ith squad's minimum distance of injured blue from red 
// minimum distance of alive red from red 
// minimum distance of alive red from red goal 
// minimum distance of alive blue from red 
/ / minimum distance of injured red from red 
// minimum distance of injured red from red goal 
// minimum distance of injured blue from red 
// max movement radius for alive reds 
// max movement radius for alive reds 
// max # of simul engagements by red 
// max # of simul engagements by red 
// if = 0 then COMMs NOT used for red, else yes 
// red communications range 
// red COMM weight (relative to w=l) 
// red default COMM weight 
// scale factor for multiplying red penalty 
// internal red clock (for reconstitution) 
// maximum number of 'ticks' before reconstitution 
// =1 if defense "clock" (i.e. strength) to be used, else =0 
// internal red clock (for defense) for ith squad 
// internal red clock (for defense) for ith squad 
// internal red clock (for defense) 
// internal red clock (for defense) 
// internal red clock (for defense) 

// number of blue squads 
// number of ISAACAs in the ith blue squad 
// number of the squad to which the ith ISAACA belongs 
// which blue squad to show the parameters of on screen 
// color code for alive blues 
// color code for highlighting individual squads 
// x coordinate of blue goal 
// y coordinate of blue goal 
// x-coordinate of ith blue ISAAC 
// y-coordinate of ith blue ISAAC 
// =1 if blue sees red and =0 otherwise 
// =1 if blue sees blue and =0 otherwise 
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int bseercomm[MAXISAACNrUM]; 
int bseebcomm[MAXISAACNUM]; 
int bstatus[MAXISAACNUM]; 
int irinb[MAXISAACNUM]; 
float wlblue[MAXISAACNUM]; 
float w2blue[MAXISAACNUM]; 
float w3blue[MAXISAACNUM]; 
float w4blue[MAXISAACNUM]; 
float w5blue[MAXISAACNUM); 
float w6blue[MAXISAACNUM]; 
int ibluenum; 
int ibsrange[MAXISAACNUM]; 
int ibluefrange[MAXISAACNUM]; 
int ibsrange_squad[MAXSQUADNUM]; 
int ibluefrange_squad[MAXSQUADNUM]; 
float zshotredbybluedeflMAXISAACNUM]; 
float zshotredbybluedef_squad[MAXSQUADNUM]; 
int iperblue; 
float wlbdeff_a[MAXSQUADNUM]; 
float w2bdeff_a[MAXSQUADNUM]; 
float w3bdeff_a[MAXSQUADNUM]; 
float w4bdeff_a[MAXSQUADNUM]; 
float w5bdeff_a[MAXSQUADNUM]; 
float w6bdeff_a[MAXSQUADNUM]; 
float wlbdeff_i[MAXSQUADNUM]; 
float w2bdeff_i[MAXSQUADNUM]; 
float w3bdeff_i[MAXSQUADNUM]; 
float w4bdeff_i[MAXSQUADNUM]; 
float w5bdeff_i[MAXSQUADNUM]; 
float w6bdeff_i[MAXSQUADNUM]; 
float blue_w_a_max[MAXISAACNUM]; 
float blue_w_i_max[MAXISAACNUM]; 
float wlbluedef_a[MAXISAACNUM]; 
float w2bluedef_a[MAXISAACNUM]; 
float w3bluedef_a[MAXISAACNUM]; 
float w4bluedef_a[MAXISAACNUM]; 
float w5bluedef_a[MAXISAACNUM]; 
float w6bluedef_a[MAXISAACNUM]; 
float wlbluedef_i[MAXISAACNUM); 
float w2bluedef_i[MAXISAACNUM]; 
float w3bluede£_i[MAXISAACNUM]; 
float w4bluedef_i[MAXISAACNUM]; 
float w5bluedef_i[MAXISAACNUM]; 
float w6bluedef_i[MAXISAACNUM]; 
int ibluemovecont 
int ibadv_a_squad[MAXSQUADNUM]; 
int ibadv_i_squad[MAXSQUADNUM]; 
int ibadvrange_squad[MAXSQUADNUM]; 
int ibclus_a_squad[MAXSQUADNUM); 
int ibdusJ_squad|MAXSQUADNUM]; 
int ibcom_a_squad[MAXSQUADNUM]; 
int ibcom_i_squad(MAXSQUADNUM]; 
int ibadv_a[MAXISAACNUM]; 
int ibadv_i[MAXISAACNUM]; 
int ibadvrangefMAXISAACNUM]; 
int ibcIus_a[MAXISAACNUM]; 
int ibclus_i[MAXISAACNUM]; 
int ibcom_a[MAXISAACNUM]; 
int ibcom_i[MAXISAACNUM]; 
int ibadvrange_min; 
int ibadvrange_max; 
int ibadv_a_min; 
int ibadv_a_max; 
int ibadv_i_min; 
int ibadv_i_max; 
int ibclus_a_min; 
int ibclus_a_max; 
int ibclus_i_min; 
int ibclus_i_max; 
int ibcom_a_min; 
int ibcom_a_max; 
int ibcomJLmin; 
int ibcom_i_max; 
float zb£rombmindist_a_squad[MAXSQUADNUM]; 

// =1 if blue sees red via COMM link 
// =1 if blue sees blue via COMM link 
// =1 if alive, 1 if injured, 0 if dead 
// number of red isaacs in blue isaac range 
// active weight for blue —> alive blue 
// active weight for blue —> alive red 
// active weight for blue —> injured blue 
// active weight for blue -> injured red 
// active weight for blue -> blue goal 
// active weight for blue -> red goal 
// total number of blue ISAACs 
// blue sensor range of ith ISAACA 
// blue fire range of ith ISAACA 
// red sensor range of the ith squad 
// red fire range of the ith squad 
// probability that a blue ISAAC shoots a red 
// probability that a blue ISAAC shoots a red 
// input flag for initial personality type 
// default weight for alive blue —> alive blue 
// default weight for alive blue -> alive red 
// default weight for alive blue —> injured blue 
// default weight for alive blue -> injured red 
// default weight for alive blue -> blue goal 
// default weight for alive blue -> red goal 
// default weight for injured blue -> alive blue 
// default weight for injured blue -> alive red 
// default weight for injured blue -> injured blue 
// default weight for injured blue —> injured red 
// default weight for injured blue —> blue goal 
// def weight vector for injured blue —> red goal 
// max absolute value of default blue alive weights 
// max absolute value of default blue injurd weights 
// default weight for alive blue -> alive blue 
// default weight for alive blue —> alive red 
// default weight for alive blue —> injured blue 
// default weight for alive blue —> injured red 
// default weight for alive blue —> blue goal 
// default weight for alive blue —> red goal 
// default weight for injrd blue —> alive blue 
// default weight for injrd blue —> alive red 
// default weight for injrd blue —> injured blue 
// default weight for injrd blue —> injured red 
// default weight for injrd blue -> blue goal 
// default weight for injrd blue -> red goal 
// blue movement constraint flag 
// ith squad's blue advance threshold 
//ith squad's injured blue advance threshold 
// ith squad's range in which blue # > threshold to advance 
//ith squad's alive blue cluster threshold 
//ith squad's injured blue cluster threshold 
//ith squad's alive blue combat threshold 
//ith squad's injured blue combat threshold 
// alive blue advance threshold 
// injured blue advance threshold 
// range within which blue # > threshold to advance 
// alive blue cluster threshold 
// injured blue cluster threshold 
// alive blue combat threshold 
// injured blue combat threshold 
// min blue advance threshold for random constraints 
// max blue advance threshold for random constraints 
// min alive blue advance threshold for ran constrnts 
// max alive blue advance threshold for ran constmts 
// min injrd blue advance threshold for ran constmts 
// max injrd blue advance threshold for ran constrnts 
// min alive blue cluster threshold for ran constrnts 
// max alive blue cluster threshold for ran constmts 
// min injrd blue cluster threshold for ran constrnts 
// max injrd blue cluster threshold for ran constrnts 
// min alive blue combat threshold for ran constrnts 
// max alive blue combat threshold for ran constmts 
// min injrd blue combat threshold for ran constrnts 
// max injrd blue combat threshold for ran constmts 
//ith squad's minimum distance of alive blue from blue 
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float zbfrombgmmdist_a_squad[MAXSQUADNfUM]; 
float zifrombmmdist_a_squad[MAXSQUADNUM]; 
float zbfrombmmdist_i_squad[MAXSQUADNUM]; 
float zbfrombgmtadisU_squad[MAXSQUADNUM]; 
float zrfrombmindist_i_squad[MAXSQUADNUM]; 
float zbfrombmindist_a[MAXISAACNUM]; 
float zbfrombgirandist_a[MAXISAACNUM]; 
float zrfrombmtadist_a[MAXISAACNUM]; 
float zbfrombmtadist_i[MAXISAACNUM]; 
float zbfrombgmmdist_i[MAXISAACNUM]; 
float zrfrombmindist_i[MAXISAACNUM]; 
int ibluemoverange_squad[MAXSQUADNUM); 
int ibluemoverange[MAXISAACNUM]; 
int blue_max_eng_num[MAXISAACNUM]; 
int blue_max_eng_num_squad[MAXSQUADNUM]; 
int blue_COMM_flag; 
int ibcommrange; 
float bcommweight; 
float bcommweight_def; 
float zbsscale[MAXISAACNUM]; 
int blue_clock[MAXISAACNUM]; 
int blue_max_r_time; 
int defense_flag; 
int alive_defense_squad[MAXSQUADNUM]; 
int injrd_defense_squad[MAXSQUADNUM]; 
int anve_defense[MAXISAACNUM]; 
int injrd_defense[MAXISAACNUM]; 
int defense_clock[MAXISAACNUM]; 
}; 

// ith squad's minimum distance of alive blue from blue goal 
// ith squad's minimum distance of alive red from blue 
//ith squad's rriinimum distance of injured blue from blue 
//ith squad's minimum distance of injured blue from blue goal 
//ith squad's minimum distance of injured red from blue 
// minimum distance of alive blue from blue 
// minimum distance of alive blue from blue goal 
// minimum distance of alive red from blue 
// minimum distance of injured blue from blue 
// minimum distance of injured blue from blue goal 
// minimum distance of injured red from blue 
// max movement radius for alive blues 
// max movement radius for alive blues 
// max # of simul engagements by blue 
// max # of simul engagements by blue 
// if = 0 then COMMs NOT used for blue, else yes 
// blue communications range 
// blue COMM weight (relative to w=l) 
// blue default COMM weight 
// scale factor for multiplying blue penalty 
// internal blue clock (for reconstitution) 
// maximum number of 'ticks' before reconstitution 
// =1 if defense "clock" (i.e. strength) to be used, else =0 
// internal blue clock (for defense) for ith squad 
// internal blue clock (for defense) for ith squad 
// internal blue clock (for defense) 
// internal blue clock (for defense) 
// internal blue clock (for defense) 
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Main Module 

// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
in 

a* 
a 
a 

a 

ISAAC.C - Irreducible Semi-Autonomous Adaptive Combatant 

Core engine (MS Visual C++ vl.52) 
Version 1.8.4 

Andy Ilachinski 
Center for Naval Analyses 
4401 Ford Avenue 
Alexandria, VA 22302 
(703) 824-2045 
ilachina@cna.org 

ISAAC_A.C contains mainO function 

All other function definitions appear in auxiliary files: 

FILE 

ISAAC_B1. C  INITIALIZE_FIELD 
ISAAC_B2.C  SCREENDATA 

ISAAC_C.C 
ISAAC_.CC 
ISAAC_.CC 
ISAAC_.CC 
ISAAC_.CC 
ISAAC_.CC 

ISAAC_D.C 
ISAAC_D.C 
ISAAC_D.C 
ISAAC_D.C 
ISAAC_D.C 
ISAAC_D.C 

ISAAC_E1. C 
ISAAC_E1. C 
ISAAC_E2.C 
ISAAC_E3. C 

ISAAC_F.C 
ISAAC_F.C 

ISAAC_G.C 
ISAAC_G.C 

ISAAC_H1.C 
ISAAC.H1. C 
ISAAC_H2 . C 
ISAAC_H2 . C 

ISAAC_I.C 
ISAAC_I.C 

ISAAC_J.C 
ISAACJ.C 

ISAAC_K1. C 
ISAAC_K2.C 

ADAPT_RED_ISAACA_WEIGHTS 
ADAPT_BLUE_ISAACA_WEIGHTS 
ADAPT_RED_LC_WEIGHTS 
ADAPT_BLUE_LC_WEIGHTS 
ADAPT_RED_GC_WEIGHTS 
ADAPT_BLUE_GC_WEIGHTS 

RED_SENSOR 
BLUE_SENSOR 
RED_COMMAND_SENSOR 
BLUE_COMMAND_SENSOR 
BLUEINRED 
REDINBLUE 

COMPUTEREDPENALTY 
COMPUTEBLÜEPENALTY 
COMPUTEREDPENALTY_GC 
COMPUTEBLUEPENALTY_GC 

COMPUTEREDPENALTY_COMM 
CCOMPuTEBLUEPENALTY_COMM 

MOVERED 
MOVEBLÜE 

RED_COMM_INFO 
BLUE_COMM_INFO 
RED_PROMOTIONS 
BLUE_PROMOTTONS 

COMBAT 
COMBAT_2 

RED_LOCAL_COMMAND_l 
BLUE_LOCAL_COMMAND_l 

RED_LOCAL_COMMAND_2 
BLUE_LOCAL__COMMAND_2 

ISAAC_L.C  UPDATEPICTURE 

ISAAC_M1.C 
ISAAC_M2.C 
ISAAC__M3.C 
ISAAC_M3 . 
ISAAC_M3 . 
ISAAC_M3 . 
ISAAC_M3 . 
ISAAC_M3 . 
ISAAC_M3 . 
ISAAC_M3.C 
ISAAC_M3.C 
ISAAC_M3.C 
ISAAC_M3.C 

ISAAC_N1.C 
ISAAC_N2.C 

ISAAC_O.C 

ISAAC_P.C 

INPUT. 
INPUT. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 
WRITE. 

.FILE_DATA 

.SCREEN_DATA 

.DATA_FILE 
OUT_FILE 
.INTERPOINT 
1_CLUSTER 
.2_CLUSTER 
.RR_NEIGHBORS 
.BB_NEIGHBORS 
.RB_NEIGHBORS 
.BR_NEIGHBORS 
.AR_NEIGHBORS 
,AB_NEIGHBORS 

PROMPT_SCREEN 
(Miscellaneous functions) 

PLAYBACK 

ABS_FLOAT 

DESCRIPTION 

initialize battlefield parameters 
dump data to screen 

adapts red ISAACA weights 
adapts blue ISAACA weight 
adapts red local commander weights 
adapts blue local commander weights 
adapts red global commander weights 
adapts blue global commander weights 

determines what the ith red ISAACA sees within sensor 
determines what the ith blue ISAACA sees within sensor 
determines what the ith red local commander sees 
determines what the ith blue local commander sees 
determines number of blues within red sensor 
determines number of reds within blue sensor 

calculates penalty for each red move possibility 
calculates penalty for each blue move possibility 
calculates penalty for red assuming GC flag on 
calculates penalty for blue assuming GC flag on 

calculate red-move penalty assuming COMM is * on' 
calculate blue-move penalty assuming COMM is ' on' 

moves all red ISAACAs (updates lattice positions) 
moves all blue ISAACAs (updates lattice positions) 

determine what ISAACAs are within red's COMM range 
determine what ISAACAs are within blue's COMM range 
adjudicate red local commander promotions 
adjudicate blue local commander promotions 

adjudicates combat (assuming ALL enagements) 
adjudicates combat (assuming enagement threshold set) 

red local commanders set local goals for 3-by-3 patch 
blue local commanders set local goals for 3-by-3 patch 

red local commanders set local goals for 5-by-5 patch 
blue local commanders set local goals for 5-by-5 patch 

update graphics screen ith new red and blue positions 

read input from data file 
input data from screen prompts 
Write current parameter values to data file 
Open 'play-back' (*.out) file 
Write interpoint-distances to statistics file 
Write cluster distributions to statistics file (using D=l 
Write cluster distributions to statistics file (using D=2 
Write red-in-red distirbutions to statistics file 
Write blue-in-blue distirbutions to statistics file 
Write red-in-blue distirbutions to statistics file 
Write blue-in-red distirbutions to statistics file 
Write all-in-red distirbutions to statistics file 
Write all-in-blue distirbutions to statistics file 

display choices for 'on-the-fly' parameter changes 
menu structures, etc. for PROMPT_SCREEN 

"plays-back" previously recorded //.out files 

returns absolute value of a float 
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// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 

ISAAC_P.C 
ISAAC_P.C 
ISAAC_P.C 
ISAAC_P.C 

ISAAC_Q.C 

ISAAC_Q.C 

GETRANDOM 
RAN1 
SIGNUM 
NOMEM 

RED_SWATH_AREA 

BLUE„SWATH_AREA 

ISAAC_R1-C  RED_SWATH„DENSITY 

ISAAC_R2.C  BLUE_SWATH_DENSITY 

ISAAC_S1.C 
ISAAC_S2.C 

ISAAC_T1.C 
ISAAC_T2.C 
ISAAC_T3.C 
ISAAC_T3.C 
ISAACJT4.C 
ISAACJT5.C 
ISAACJT5.C 
ISAAC_T5.C 

RED_GLOBAL_COMMAND 
BLUE_GLOBAL„COMMAND 

INTERPOINT_DIST 
SPATIAL_ENTROPY 
CLUSTER_1 
MOMENT 
CLUSTER_2 
NEIGHBORS 
CENTER__MASS 
GOAL_STATS 

get a random number between a and b 
uniform random generator from 'Numerical Recipes* 
sign (+1,-1, or 0) of a float 
returns 'insufficient memory to run' message and exits 

calculates the area of each of 16 'swaths* centered 
at the current (x,y) coordinates of red local commander 
calculates the area of each of 16 'swaths' centered 
at the current (x,y) coordinates of blue local commander 

calculates the density of blue ISAACAs in each of 16 
swath' centered at the current (x,y) coordinates of 
red local commander 
calculates the area of of red ISAACAs in each of 16 
swaths centered at the current (x,y) coordinates of 
blue local commander 

red global commanders set 'direction* goals for LCs 
blue global commanders set 'direction' goals for LCs 

calculates R-R, B-B, R-B and R,B-goal distance dists 
computes spatial entropy for 4x4, 8x8 and 16x16 blocks 
returns the distribution of clusters (D=l) and average size 
returns mean ave, ave deviation and standard deviation 
returns the distribution of clusters (D=2) and average size 
returns the average number of ISAACAs at distance D 
returns the center-of-mass of red, blue and total forces 
returns the number of ISAACAs near enemy flag 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

<isaacl8.h> 
<istrcl8.h> 
<string.h> 
<float.h> 
<math.h> 
<stdlib.h> 
<stdio.h> 
<conio.h> 
<time.h> 
<graph.h> 
<io.h> 
<malloc.h> 

// contains MAXIMUM sizes for battlefield and ISAACA arrays 
// contains COMMAND, BATTLE, RED and BLUE parameter structures 

//* 
// 
// 
// 
//* 

Allocate Memory for Structures 

struct red_GC_parameters red_GC; 
struct blue_GC_parameters blue_GC; 
struct red_command_parameters red_command; 
struct blue_command_parameters blue_command; 
struct battle_parameters battle; 
struct red_parameters red; 
struct blue_parameters blue; 
struct statistics stats; 

// 
// 
// 
// 
// 

void 

FUNCTION PROTOTYPES 

INPUT_FILE_DATA(unsigned char filename[30], struct statistics *ss, struct red_GC_parameters *rgcp, 
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp, 
struct blue_command_parameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue„parameters *bluep, long *idum) ,- 

void INPUT_SCREEN_DATA(struct red_GC_parameters *rgcp, struct blue_GC_parameters *bgcp, 
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp, 
struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep, long *idum, int *iternum); 

void WRITE_DATA_FILE(FILE *outdatafile, struct statistics *s, struct red_GC_parameters *rgcp, 
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp, 
struct blue_command_parameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters *bluep); 

void WRITE_OUT_FILE{FILE »outdatafile, int red_GC„flag, int blue_GC_flag, 
struct red„command_parameters *rcomp, struct blue_command_parameters 
struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep); 

'bcomp. 

void INITIALIZE_FIELD{struct statistics *s, struct red_GC_parameters Tgcp, 
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp, 
struct blue„command_parameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters *bluep, 
int iflag[5][5], long *idum); 

void SCREENDATA(int itime, int idata, unsigned char filename[30], struct red_command_parameters *rcomp, 
struct blue_command_parameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters *bluep); 

void ADAPT_RED_ISAACA__WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum, 
struct red„command_parameters *rcomp, struct red„parameters 'redpj; 
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void ADAPT_BLUE_ISAACA_WEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum, 
struct blue_command_parameters *bcomp, struct blue_parameters »bluep); 

void ADAPT_RED_LC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum, 
struct red_command_parameters »rcomp, 
struct red_parameters *redp); 

void ADAPT_BLUE_LC_WEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum, 
struct 'blue_command__parameters »bcomp, 
struct blue_parameters »bluep) ; 

void ADAPT_RED_GC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum, 
struct red_GC_parameters *rgcp, 
struct red_command_parameters »rcomp, 
struct red_parameters »redp) ,- 

void ADAPT_BLUE_GC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum, 
struct blue_GC_parameters »bgcp, 
struct blue_command_parameters *bcomp, 
struct blue_parameters *bluep) ,- 

void ADAPTBLUEWEIGHTStint i, int ibinbnum, int irinbnum, int ibadvnum, 
struct blue_command_parameters »bcomp, struct blue_parameters »bluep); 

void RED_COMM_INFO(int i, struct red_parameters »redp, struct blue_parameters »bluep); 

void BLUE_COMM_INFO(int i, struct red_parameters »redp, struct blue_parameters »bluep); 

void MOVERED (int i, int imrr, int imove, struct battle_parameters *batp, 
struct red_parameters *redp) ,- 

void MOVEBLUE (int i, int imbr, int imove, struct battle_parameters *batp, 
struct blue_parameters *bluepj; 

void RED_SENSOR(int *irinrnum, int *ibinrnum, int *iradvnum, int *ibinrinjnum, 
int *irinrinjnum,.int i, struct red_parameters *redp, struct blue_parameters *bluep, 
int »»ilblbinr) ,- 

void RED_COMMAND__SENSOR (int »irinrnum, int *ibinrnum, int *iradvnum, int *ibinrinjnum, 
int »irinrinjnum, int i, struct red_command__parameters »rcomp, 
struct red_parameters »redp, struct blue_parameters *bluep, int »»ilblbinr),- 

int BLUEINRED{ int i, struct red_parameters *redp, struct blue_parameters *bluep, 
int **ilblbinr ); 

void BLUE_SENSOR{int *ibinbnum, int »irinbnum, int »ibadvnum, int »irinbinjnum, 
int »ibinbinjnum, int i, struct red_parameters »redp, 
struct blue_parameters »bluep, int **ilblrinb); 

void BLUE„COMMAND_SENSOR{int »ibinbnum, int »irinbnum, int »ibadvnum, int »irinbinjnum, 
int »ibinbinjnum, int i, struct blue_command_parameters »bcomp, 
struct red_parameters »redp, struct blue_parameters »bluep, int »»ilblrinb); 

int REDINBLUE( int i, struct red_parameters »redp, struct blue_parameters »bluep, 
int »»ilblrinb); 

float COMPUTEREDPENALTY(int i, int imrr, int »igoalflag, int irinrinjnum, int ibinrinjnum, 
float zmin, int iflagt5][5], float z[5][5], struct red_command_parameters »rcomp 
struct blue_command_parameters »bcomp, struct battle_parameters »batp, 
struct red_parameters »redp, struct blue_parameters »bluep); 

float COMPUTEREDPENALTY_COMM(int i, int imrr, int »igoalflag, int irinrinjnum, 
int ibinrinjnum, float zmin, int iflag[5][5], float z[5][5], 
struct red_command_parameters »rcomp, struct blue_command_parameters »bcomp, 
struct battle_parameters »batp, struct red_parameters »redp, 
struct blue_parameters »bluep),- 

float COMPUTEREDPENALTY_GC(int i, int imrr, int »igoalflag, int irinrinjnum, 
int ibinrinjnum, float zmin, int iflag[5][5], float z[5][5], 
struct red_GC_parameters »rgcp, struct blue_GC_parameters »bgcp, 
struct red_command„parameters »rcomp, struct blue_command_parameters »bcomp, 
struct battle_parameters »batp, struct red_parameters »redp, 
struct blue_parameters »bluep); 

float COMPUTEBLUEPENALTY{int i, int imbr, int »igoalflag, int irinbinjnum, int ibinbinjnum, 
float zmin, int i£lag[5][5], float z[5][5], struct red_command_parameters »rcomp 
struct blue_command_parameters »bcomp, struct battle_parameters »batp, 
struct red_parameters »redp, struct blue_parameters »bluep) ,- 

float COMPUTEBLUEPENALTY_C0MM(int i, int imbr, int »igoalflag, int irinbinjnum, 
int ibinbinjnum, float zmin, int iflag[5][5], float z[5][5], 
struct red_command_parameters »rcomp, struct blue_command__parameters »bcomp, 
struct battle_parameters »batp, struct red_parameters »redp, 
struct blue^parameters »bluep); 

float COMPUTEBLUEPENALTY_GC{int i, int imbr, int »igoalflag, int irinbinjnum, int ibinbinjnum, 
float zmin, int iflag[5][5], float z[5][5], struct red_GC_parameters »rgcp, 
struct blue_GC_parameters »bgcp, struct red_command_parameters »rcomp, 
struct blue_command_parameters »bcomp, struct battle_parameters »batp, 
struct red_parameters »redp, struct blue_parameters »bluep); 

void COMBAT( struct battle_parameters »batp, struct red_parameters »redp, 
struct blue_parameters »bluep, long »idum, int »»ilblbinr, int »»ilblrinb); 

void C0MBAT_2{ struct battle_parameters »batp, struct red„parameters »redp, 
struct blue_parameters »bluep, long »idum, int »»ilblbinr, int »»ilblrinb); 
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void UPDATEPICTURE(FILE *stat_data[22], int itime, int rcd_GC_flag, int blue„GC_flag, 
struct red__command_parameters *rcomp, struct blue_command_parameters *bcomp, 
struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep, struct statistics *s); 

int PROMPT_SCREEN(struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep, struct red_GC_parameters *rgcp, 
struct blue_GC_parameters *bgcp, struct reä_command_parameters *rcomp, 
struct blue_command_parameters *bcorop, struct statistics *s, long *idum); 

void RED_LCCAL_C0MMAND_1(int i_command, int itime, struct red_GC_parameters *rgcp, 
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp, 
struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep, long *idum); 

void BLUE_LOCAL_C0MMAND_l(int i_command, int itime, struct blue_GC_parameters *bgcp, 
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp, 
struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters *bluep, long *idum); 

void RED_L0CAL_C0MMAND_2(int i_command, int itime, struct red_command_parameters *rcomp, 
struct blue_commancLparameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters "bluep, long *idum),- 

void BLUE_LCCAL_COMMAND_2{int i_command, int itime, struct red_command_parameters *rcomp, 
struct blue_command_parameters *bcomp, struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters *bluep, long *idum); 

void RED_GLOBAL_COMMAND(struct red_GC_parameters *rgcp, struct red_command_parameters *rcomp, 
struct red_parameters *redp, long *idum); 

void BLUE_GLOBAL_COMMAND(struct blue_GC_parameters *bgcp, struct blue_command_parameters *bcomp, 
struct blue_parameters *bluep, long *idum); 

void RED_PROMOTIONS(struct red_command„parameters *rcomp, struct red_parameters *redp, long *idum); 

void BLUE_PROMOTIONS(struct blue_command_parameters *bcomp, struct blue_parameters *bluep, long *idum); 

void RED_SWATH_AREA(int isize, struct red_GC_parameters *rgcp, 
struct red_cotnmand_j?arameters *rcomp,   struct red_parameters *redp); 

void BLUE_SWATH_AREA(int isize, struct blue_GC_parameters *bgcp, 
struct blue_command_parameters *bcomp, struct blue_parameters *bluep); 

void RED_SWATH_DENSITY(int isize, struct red_GC„parameters *rgcp, 
struct red__command_parameters *rcomp, struct red_parameters *redp, 
struct blue_parameters *bluep); 

void BLUE_SWATH_.DENSITY(int isize, struct blue_GC„parameters *bgcp, 
struct blue_command_parameters *bcomp, struct red_parameters *redp, 
struct blue_parameters *bluep); 

unsigned char PLAYBACK(unsigned char plotfilename[30], int *idata, unsigned char filename[30], 
int *ichoice); 

void INTERPOINTJDIST(struct red_command_parameters *rcomp, struct blue_command_parameters "bcoinp, 
struct red_parameters *redp, struct blue_parameters *bluep, struct statistics *s); 

void SPATIAL_ENTROPY(int isize, struct statistics *s, struct red_parameters *redp, 
struct blue_parameters *bluep),- 

void CLUSTER_1(int isize, struct red_parameters *redp, struct blue_parameters *bluep, 
struct battle_parameters *batp, struct statistics *s); 

void CLUSTER_2{int isize, struct red_parameters *redp, struct blue_parameters *bluep, 
struct battle_parameters *batp, struct statistics *s); 

void NEIGHBORS(FILE *stat_data[22], int itime, struct red_parameters *redp, struct blue_parameters *bluep, 
struct statistics *s); 

void CENTER_MASS(FILE *stat_data[22], int itime, struct red_parameters *redp, 
struct blue_parameters "bluep, struct statistics *s); 

void GOAL_STATS(FILE *stat_data[22], int itime, int isize, struct red_parameters *redp, 
struct blue_parameters *bluep, struct statistics *s); 

void WRITE_INTERPOINT(int itime, struct statistics *s, FILE *stat_data[22]); 

void WRITE_JL.CLUSTER( int itime, struct statistics *s, FILE *stat_data[22]) ,- 

void WRITE_2_CLUSTER(int itime, struct statistics *s, FILE *stat_data[22]); 

float abs_float (float x); 

float getrandom(int x, int y, long *idum); 

float rani{long *idum); 

void nomemO ,- 

//**** * ** .**.**.*..*.********************* ******* 
// 
// MAIN: RUN ISAAC 
// 
/,***********.***„ ************ **** *****..* ** * ** ******* 

void main() 
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mt l, li, D; 
int imx, imy; 
int im, imc; 
int igoal; 
int igoalflag; 
int imove; 
int ibinrnum; 
int irinbnum; 
int irinmum; 
int ibinbnum; 
int iradvnum; 
int ibadvnum; 
int irinrinjnum; 
int ibinbinjnum; 
int irinbinjnum; 
int ibinrinjnum; 
int playterm; 
int itime; 
int iternum; 
int irun_choice; 
int idata; 
int imovecand[26]; 

// loop variables 
// loop variables 
// labels for intermediate candidte moves 
// termination flag; =1 —> red wins 
// if =1 then red wins; if =2 then blue wins 
// labels selected move (1 <= imove <= 9) 
// number of blue ISAACS in red sensor range 
// number of red ISAACS in blue sensor range 
// number of red ISAACS in red sensor range 
// number of blue ISAACS in blue sensor range 
// threshold number of reds to advance 
// threshold number of blues to advance 
// number of injured red in red sensor 
// number of injured blue in blue sensor 
// number of injured red in blue sensor 
// number of injured blue in red sensor 
// return variable from PLAYBACK; l=Quit 
// time counter 
// number of iterations to store in file 
// if 1 then continue, else new start 
// =1 = screen prompt; 2= read from datafile 
// intermediate move candidates from which 
//an ISAAC will choose an actual move 
// i£lag=l if a particular move represents a viable option 
// l=trace "ON", else trace "OFF" 
// = red.iredmoverange if alive, else = 1 
// = blue.ibluemoverange if alive, else = 1 
// if =1 then VGA, if =2 then SVGA 

int iflag[5][5]; 
int itrace; 
int imrr; 
int imbr; 
int igraphtype; 
int save_flag; 
int jj, icount; 
int bluelabel_randomizeä[MAXISAACNUM]; 
int redlabel_randomized[MAXISAACNUM) ,- 
int **ilblrinb;   // jth red's (in blue's range) label 
int **ilblbinr;   // jth blue's (in red's range) label 

long idum; 

float zmin; 
float zmoveprob; 
float zran; 
float z[5][5]; 

// random number seed (dummy 'carry-over' variable) 

// minimum seed used by penalty function 

// variable to catch initial ran number call 
// intermediate expected penalty function 

unsigned char buffer, bufferq; 
unsigned char filename[30]; 
unsigned char outfilename[30]; 
unsigned char snapshotfile[303; 
unsigned char plotfilename[30]; 
unsigned char fondir [_MAX_PATH); 
unsigned char list[20J; 
char bb[20I; 
short xfon; 

FILE *outdatafile; 
FILE *stat_data[22]; 

struct _fontinfo fi; 
struct __videoconfig vc; 

// name of input data file 
// name of output file 
// name of output file 
// name of plot file to be played-back 

//* 
// 
// 
// 
//* 

Allocate Memory for Matrices 

ilblrinb = (int**) _fmalloc( (MAXISAACNUM+1) * sizeoffint*) ) ; 
if ( !ilblrinb ) nomemO; 
for ( i = 0; i < (MAXISAACNUM+1); i++ ) 

ilblrinbli] = (int*) _fmalloc( (MAXNEIGHBORNUM+1) * sizeof(int) ) ; 
if ( !ilblrinb[i] ) nomemO; 

) 
ilblbinr = (int**) _fmalloc( (MAXISAACNUM+1) ♦ sizeoffint*) ) ; 
if ( (ilblbinr ) nomemO; 
for ( i = 0; i < (MAXISAACNUM+1); i++ ) 

ilblbinrti] = (int*) _fmalloc( (MAXNEIGHBOENUM+1) * sizeof(int) ) ; 
if ( !ilblbinrti] ) nomemO; 

) 

//* 
// 
// 
// 
//* 

Register and Set Fonts 

if( _registerfonts( "sserife.FON" ) <= 0 ) 

_outtext( "Enter full path where .FON files are located: " ) ,- 
gets( fondir ); 
strcatl fondir, "\\*.FON" ); 
if( _registerfonts( fondir ) <= 0 ) 
( 

_outtext( "Error: can't register fonts" ); 
exit( 1 ); 

) 
} 
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//* 
// 
// 
// 
//* 

Sec graphics colors 

reä_.command.red_command_color = 14; 
blue__.command.blue__command_color = 15; 
red.squadcolor = 14; 
blue.squadcolor = 15; 
red.redcolor = 12; 
blue.bluecolor = 9; 
battle.goalcolor = 10; 
battle.boxcolor = 3; 
blue_command.blue_subordinate_color„flag = 
red_command.red_subordinate_color_flag = 0; 

// 
// 
// 

} 

( !_setvideomode ( 
_setvideomode( 
_clearscreen( . 

Set Video Mode 

_SRES16COLOR ) ){ 
_VRES16COLOR ); 
GCLEARSCREEN ),- 

Opening Screen 

100, 85, 700, 90 ); 

// 
// 
// 
// .**.***************„ 

_setbkcolor ( _BLUE ); 
_clearscreen{ _GCLEARSCREEN ); 
_getvideoconfig{ &vc ); 
_setcolor{ 15 ); 
_moveto( 75, 80 ) ; 
_rectangle_w{ _GFILLINTERIOR, 
_moveto( 565, 295 ); 
_rectangle_w{ _GFlLLINTERIOR, 
strcat{ strcat( strcpyt list, 
strcat( list, "h30w24b" ); 
_getfontinfo{ &£i ); 
_setfont( list ); 
_setcolor( 15 ); 

xfon = (vc.numxpixels / 2) - {_getgtextextent ( "ISAAC" ) / 2) ,- 
_moveto{ xfon, 105 ); 
_outgtext ("ISAAC"); 

xfon = (vc.numxpixels / 2} - (_getgtextextent( "Irreducible Semi-Autonomous" ) / 2); 
_moveto( xfon,. 143 ); 
_outgtext ("Irreducible Semi-Autonomous"); 

100, 270, 700, 275 
), "sserife"). 

2) 

2) 

"); 
2) 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Adaptive Combat" ) / 2); 
_moveto( xfon, 173 ); 
_outgtext ("Adaptive Combat"); 
_unregisterfonts(); 
_registerfonts{ "oemlO.FON" ); 
strcat{ strcat( strcpy{ list, "t'" ), "oemlO"),"'"); 
strcat{ list, "h30w24bv" ); 
_setfont( list ) ,- 
_getfontinfo( &fi ); 

xfon = (vc.numxpixels / 2) - („getgtextextent( "Version 1.8.4" ) / 2); 
_moveto( xfon, 227 ); 
_outgtext ("Version 1.8.4"); 

xfon = {vc.numxpixels / 
_jmoveto{ xfon, 242 ); 
_outgtext ("10 April 1997"); 
_setcolor{ 7 ); 

xfon = (vc.numxpixels / 
_moveto( xfon, 300 ); 
_outgtext ("Andy Ilachinski" 

xfon = (vc.numxpixels / 
_moveto( xfon, 315 ); 
„outgtext {"Center for Naval Analyses"); 

xfon = {vc.numxpixels / 2) - („getgtextextent( "4401 Ford Avenue" ) / 2); 
_moveto( xfon, 330 ); 
_outgtext {"4401 Ford Avenue") ,- 

xfon = {vc.numxpixels / 2) - („getgtextextent( "Alexandria, VA 22302" ) / 2); 
_moveto( xfon, 345 ); 
_outgtext {"Alexandria, VA 22302"); 

xfon = {vc.numxpixels / 2) - {_getgtextextent( "ilachina@cna.org" ) / 2); 
jmoveto{ xfon, 360); 
_outgtext ("ilachina@cna.org"); 

xfon = {vc.numxpixels / 2)   -   {„getgtextextent{ "Press <ENTER> to continue ... 
_moveto{ xfon, 550 ); 
_outgtext ("Press <ENTER> to continue  "),- 

_getch(); 

startagain: 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display__red„squad = 1; 
blue.display_blue_sguad = 1; 
battle.squad_color_flag = 0; // default is to NOT highlight 

(_getgtextextent( "10 April 1997" ) / 2); 

(_getgtextextent{ "Andy Ilachinski" ) / 2); 

(_getgtextextent( "Center for Naval Analyses" ) / 2); 

) / 2); 
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// initialize "playback" flag 
playterm = 0; 

// seed random number generator 
idum=-31415926; 
zran=:ranl (&idum); 

if ( !_setvideomode< _SRES16COLOR ) ){ 
_setvideomode ( _VRES16COLOR ) ; 
_clearscreen( _GCLEARSCREEN ); 

) 
_setbkcolor ( _BLUE ); 
_clearscreen( _GCLEARSCREEN ); 

_unregisterfonts{); 
_registerfonts( "sserife.FON" ) ; 
strcatl strcatl strcpyl list, "f" ), "sserife"), "•"); 
strcatl list, "h30w24bv" ); 
_getfontinfo( &fi ); 
_setfont( list ); 
xfon = (vc.numxpixels / 2) - (_getgtextextent ( "SELECT RUN OPTION" ) / 2); 
_moveto{ xfon, 55 ); 
_outgtext ("SELECT RUN OPTION"); 
_settextposition( 7, 35); 
printf("[l] Run ISAAC engine with new input"); 
_settextposition( 8, 35); 
printf("[21 Playback old run"); 
_settextposition( 9, 35); 
printf{"[3]  Quit"); 
_settextposition( 11, 39); 
printf("? "); 
scanf("%i",&battle.ichoice); 

if {battle.ichoice == 3}{ 
exit(l); 

) 
if (battle.ichoice ==> 2){ 

goto playback; // goto end of file 
) 
xfon = (vc.numxpixels / 2) - (_getgtextextent ( "SPECIFY FORM OF INPUT" ) / 2); 
_moveto{ xfon, 215 }; 
_outgtext ("SPECIFY FORM OF INPUT"); 
_settextposition( 17, 40); 
printf("[11 Prompt from screen "); 
_settextposition( 18, 40); 
printf("[2] Read from datafile "); 
_settextposition( 20, 44); 
printf("? "); 
scanf("%i",&idata); 

if (idata == 2){ 
_settextposition( 22, 40); 
printf("File name ? "); 
scanf("%s", &filename); 

read_data: 

//......................   
// 
// Read input from data file 
// //....................................  
INPUT_FILE_DATA(filename, tstats, &red_GC, &blue_GC, &red_command, &blue_command, 

&battle,  &red, &blue, fcidum); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "SPECIFY FORM OF OUTPUT" ) / 2); 
_moveto( xfon, 390 ); 
_OUtgtext ("SPECIFY FORM OF OUTPUT"); 
_settextposition( 28, 45); 
printf{"[1] Terminal "); 
_settextposition( 29, 45); 
printf("(2) File ") 
_settextposition( 30, 45); 
printf("[3] Both ") 
_settextposition( 32, 49); 
printf("? "); 
scanf("%i",&battle.ioutdata); 

if (battle.ioutdata > 1)( 
_settextposition( 34, 45); 
printf("File name ? "); 
scanf("%s", &outfilename); 

) 
if (idata — 2 &£ battle.itermcond == 2 && battle.ioutdata > 1)( 

_settextposition( 35, 28 ); 
printf("NUMBER OF ITERATIONS TO STORE IN OUTPUT FILE ? "); 
scanf ("%i",&itemum) ; 

) 
else{ 

iternum = 1000; 
) 
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if (battle.ioutdata != 2){ 
igraphtype =2; // default graphics = SVGA 
if ( !_setvideomode( _SRES16C0LOR ) ){ 

_setvideomode ( _VRES16C0L0R ); 
_clearscreen( _GCLEARSCREEN ); 

) 
} 

_unregisterfonts(),- 
_registerfonts( "oemlO.FON" ); 
strcatl strcatl strcpy( list, "t" ), "oemlO"), "'") ; 
strcatl list, "h30w24bv" ); 
_getfontinfo( &fi ); 
_setfont( list ); 

if (idata == 1){ 

// 
// Prompt user for input data 
// //.»..**«  
//INPUT_SCREENJDATA(&red_GC, &blue_GC, &red_command, &blue_command, fcbattle, 
// &red, &blue, fcidum, fciternum); 

_clearscreen{ _GCLEARSCREEN ); 

_getvideoconfig( &vc ); 
if (vc.numxpixels < 641} { // then use VGA values 

_settextposition( 10, 15); 
) 
else( 

_settextposition( 10, 25); 
) 
printfCSAVE PARAMETER VALUES TO DATA FILE (y=l/n=0) ? ") ; 
scanf{"%i"#&save_flag); 

if (save_flag --  1){ 
//*****  
// 
//       Save current parameter set to data file 
// //...,....  
if {vc.numxpixels < 641) {   // then use VGA values 

_settextposition{ 12, 15); 
> 
else{ 

_settextposition( 12, 25); 
) 
printf{"    File name ? "); 
scanf("%s", &filename); 

if ( (outdatafile = fopen(filename, "wt")) == NULL )( 
printf{" Cannot open data file.Xn"); 
exit(l); 

) 
WRITE_DATA_FILE(outdatafile, sstats, &red_GC, &blue_GC, &red_command, 

tblue_command, fitbattle, &red, &blue); 
) 

) // end if idata == 1 

//......  
// 
//       if battle.ioutdata>l then write data to file 
// 
//****  
if (battle.ioutdata > 1){ 

if ( (outdatafile = fopen(outfilename, "wt")) == NULL }{ 
printf{" Cannot open data file.Xn"),- 
exit(l); 

) 
WRITE_OUT_FILE(outdatafile,   red_GC.red_GC_flag,  blue_GC.blue_GC_flag, 

&red_command,   &blue_command,   fcbattle,  &red,  tblue); 
) 
//**  
// 
//   start here if any options are changed on-the-fly using PROMPT_SCREEN() 
// //  

changeoption: 

_setbkcolor ( _BLACK ); 
_clearscreen( _GCLEARSCREEN ); 

//......  
// 
// Initialize combat battlefield 
// //  
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INITIALIZE_FIELD(&stats, &red_GC, &blue_GC, &red_command, &blue_command, sbattle, 
£red, &blue, iflag, fcidum); 

// ** 
II 
II 
II 

itime = 0; 

Initialize time counter 

//* 
// 
// 
// 
//* 
if 

//" 
// 
// 
// 
II* 
if 

Dump data to screen and show initial configuration 

(battle.ioutdata  != 2){ 
SCREENDATAdtime,   idata,   filename,   &red_command,  &blue_command,   fcbattle, 

fired,  &blue); 

Are statistics to be tabulated? 

(stats.stat_flag == 1){ 
_getvideoconfig( &vc ),- 
if ( (stat_data[l) = fopenCstats_l.dat", 

(stat_data[2) 
(stat_data[3) 
(stat_data[4) 
(stat_data[5) 
(stat_data[6] 
(stat_data[7] 
(stat_data[8] 
(stat_data[9) 
(stat_data[10] 
(stat_data[ll] 
(stat_datatl2] 

fopen("stats_2. dat" 
fopen("stats_3.dat", 
fopen("stats_4.dat", 
fopen("stats_5.dat", 
f open ("stats_6.dat", 
f open (" stats_7. dat", 
fopen("stats_8.dat", 
fopen("stats_9.dat", 

= fopenfstats_10.dat" 
= fopenCstats_ll.dat" 

f open {" stats_12. dat", 

"wt") == NULL 
"wt") == NULL 
■wt") == NULL 
"wt") == NULL 
"wt") == NULL 
"wt") == NULL 
"wt") == NULL 
"wt") == NULL 
"wt") == NULL 
, "wt )) == NULL 
, "wt ) ) — NULL 
, "wt ) ) == NULL 
, "wt )) == NULL )( (stat_data[13]   = fopenl-stats_13.dat" 

printft" Cannot open data file.Xn"); 
exit(l); 

} 
if   (vc.numxpixels < 641)   {  // then in VGA mode 

_setviewport(200,455,525,465); 
_clearscreen ( „GVIEWPORT } ,- 
_setviewport(l,1,639,479); 
_moveto( 205, 450 ); 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ,); 
_outgtext("Statistics being calculated ... "); 
_setviewport(140,48,525,428); 

> 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ) ,- 
_setviewport(l,1,799,599) ,- 
_moveto( 270, 577 ); 
_setcolor(14 ); 
_setgtextvector( 1, 0 ); 
_outgtext("Statistics being calculated ... "); 
_setviewport(120,50,680,550) ,- 

> 
} 

llllllllllllllllllllll/llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II 
II START MAIN DYNAMICS LOOP 
// 
in 1111 in 1111111 n 1111 / n 111 /1111111iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiui 

++itime;  // increment time counter 

//* 
// 
// 
// 
//* 

Calculate descriptive statistics 

if (stats.stat_flag 

// 
IX 

// calculate ISAACA-ISAACA and ISAACA-goal interpoint distributions 
// 
if (stats.interpoint_flag == 1){ 

INTERPOINT_DIST(&red_command, &blue_command, &red, &blue, fistats); 
WRITE_INTERPOINT(itime, Sstats, stat_data); 

} 

// 
// calculate spatial entropy using different course-graining 
// 
if (stats.entropy_flag ==:'1){ 

SPATIAL_ENTROPY(battle.isize, fcstats, sred, sblue); 
fprintf(stat_data[91, "%3i  %5.4f  %5.4f  %5.4f  %5.4f  %5.4f %S.4f  %5.4£  %5.4f  %5.4f\n" 

itime, stats.red_entropy_l, stats.blue_entropy_l, stats.red_blue_entropy„l, 
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stats. red_entropy_2, stats. blue_entropy_2, stats. red__blue_entropy_2, 
stats.red_entropy_3, stats.blue_entropy_3, stats.red_blue_entropy_3); 

) 

// 
// find cluster size distribution (using D=l) 
// 
if (stats.cluster_l_flag==l){ 

CLUSTERJ. (battle.isize, &red, Sblue, sbattle, Sstats); 
WRITE_l_CLUSTER(itime, Sstats, stat_data); 

} 

// 
// find cluster size distribution (using D=2) 
// 
if (stats.cluster_2_flag==l)( 

CLUSTER_2(battle,isize, Sred, iblue, Sbattle, Sstats); 
WRITE 2_CLUSTER(itime, Sstats, stat_data); 

} 

// 
// find average number of neighboring ISAACAs at distance D <= R 
// (write to stats_14.dat, stats_15.dat,... , stats_19.dat) 
// 
if (stats.neighbors_flag == 1)( 

NEIGHBORS(stat_data, itime, sred, sblue, sstats); 
) 

// 
// calculate ISAACA-ISAACA and ISAACA-goal interpoint distributions 
// (write to stats_20.dat» 
// 
if (stats.center_mass_flag " 1}( 

CENTER_MASS(stat_data, itime, Sred, Sblue, sstats); 
) 

// 
// calculate goal statistics 
// (write to stats_21.dat) 
// 
if (stats.goal_stat_flag == 1){ 

GOAL_STATS(stat_data, itime, battle.isize, sred, Sblue, Sstats); 
) 

) 
//*** * ......  
// 
//    Should order of move selection be shuffled during each iteration? 
// //...............  
if (battle.imove_selection == 1){ // select moves in fixed order 

for (3=1; j<=red.irednum; ++j){ 
redlabel„randomized[j] = j; 

} 
} 
else{ 

// 
//     Randomize order in which to consider moves for red ISAACAs: 
//     'i' is the actual label and the array redlabel_randomized[j] = i 
// . //......................  
icount=0; 
for {j=l; j<=red.irednum; ++j){ 

// select random label between 1 and red.irednum 
ired:   i = (int)(getrandomt 0, red.irednum, sidum ))+l; 

// test to see if label has already been used 
for (jj=l; J3<=icount; ++33)( 

if (redlabel_randomized[3 3-] == i) goto newired; 
) 
++icount; 
redlabel randomizedlj] = i; 

} 
) 
if (battle.imove_selection == 1){ // select moves in fixed order 

for (j=l; j<=blue.ibluenum; ++j){ 
bluelabel_randomized[3'] = 3; 

) 
) 
else{ //...........  

// 
//     Randomize order in which to consider moves for blue ISAACAs: 
//     'i* is the actual label and the array bluelabel_randomized[j] 
// 
// * *  
icount=0; 
for (j=l; 3<=blue.ibluenum; ++j)( 

// select random label between 1 and red.irednum 
blue:  i = (int)(getrandomf 0, blue.ibluenum, sidum ))+l; 

// test to see if label has already been used 
for (33=1; jj<=icount; ++jj)( 

if (bluelabel_randomized[jj] == i) goto newiblue; 
) 
++icount; 
bluelabel_randomized[j] = i; 
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} 

//*** ************ *•*»**••**•*******************************.***-*****-**************** 
// 
// Scan for user interrupt: 
// 
// A —> set flag for measuring and recording run statistics 
// B —> toggle blue squad parameters to display 
// C --> paint "command structure' 
// D —> open data file 
// E —> toggle red squad parameters to display 
// F —> fast screen update 
// H —> take a 'snapshot* of the current configuration 
// L —> close statistics files 
// N —> restart with random seed 
// 0 —> options for making 'on-the-fly' parameter changes 
// P —> open 'playback* <*.out) file 
// Q —> quit 
// R —> restart with same random seed (re-run) 
// S —> single-step screen update 
// T —> enable trace 
// U —> toggle: hightlight squads whose parameters are currently displayed 
// //******* ****** * * ***.**..***»*****•* ******.********************* 

wait: if( battle.default„speed -= 2 && !_kbhit() ) goto wait; 

if( _kbhit{) ){ 
buffer = _getch{); 

options:   switch (buffer) { 
case 'u': // hightlight squads whose parameters are currently displayed 

if (battle.squad_color_flag « 0){ 
battle.squad_color_flag = 1; // highlight *on* 

} 
else{ 

battle.squad_color_flag = 0; // highlight 'off 
) 
_clearscreen( _GVTEWPORT ),- 
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag, 

blue_GC.blue„GC_flag,&red_command, &blue_command, 
fcbattle, &red, &blue, &stats); 

goto wait; 
break; 

case 'e': // toggle red squad parameters to display 
i f ( red.num_red_squads > 1 ){ 

red.display_red_squad = 
{red.display„red_squad + 1) % (red.num_red_squads+l) ; 

if (red.display_red_squad==0)red.display_red_squad=l; 
_clearscreen( _GCLEARSCREEN ); 
SCREENDATAtitime, idata, filename, &red_command, &blue_command, fcbattle, &red, iblue); 
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag, 

blue_GC.blue_GC_flag,&red_command, &blue_command, 
&battle, &red, &blue, fistats); 

} 
goto wait; 
break; 

case 'b': //toggle blue squad parameters to display 
if ( blue.num_blue_squads > 1 )( 

blue.display_blue_squad = 
{blue.display_blue_squad + 1) % (blue.num_blue_squads+l); 

if (blue. display_.blue_squad==0) blue. display_blue_squad=l ; 
_clearscreen( _GCLEARSCREEN ); 
SCREENDATAtitime, idata, filename, &red_command, &blue_command, &battle, &red, &blue); 
UPDATEPICTURE(stat_data, itime, red_GC.red__GC_flag, 

blue_GC.blue_GC_flag,&red_command, &blue__command, 
&battle, &red, &blue, &stats); 

} 
goto wait; 
break; 

case 'h': // take a 'snapshot' of the current configuration 
_getvideoconfig( &vc ); 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465); 
_clearscreen( „GVIEWPORT ); 
_setviewport(1,1,639,479); 
_rooveto( 205, 450 ); 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ); 
_outgtext("  'Snapshot' file name ? "); 
settextpositiont 29, 52 ); 

} 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,l,799,599); 
_moveto( 270, 577 ); 
_setcolor( 14 ); 
_setgtextvector ( 1, 0 ),- 
_outgtext("  * Snapshot' file name ? '); 
_settextposition( 37, 59 ); 

} 
scanf (■,%s", fisnapshotfile) ,- 
if ( (outdatafile = fopen(snapshotfile, "wt")) == NULL ){ 

printfC Cannot open data file.\n"); 
exit(l); 

} 
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_clearscreen E _GCLEARSCREEN ) ; 
SCREENDATA{itime, idata, filename, &red_command, &blue_command, fcbattle, &red, fcblue); 
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag, blue_GC.blue„GC_flag,&red_command, 

&blue_command, fibattle, &red, &blue, &stats); 
WRITE_OUT_FILE(outdatafile, red_GC.red_GC_flag, bluej3C.blue„GC_flag, &red_command, 

&blue_command, fibattle, &red, &blue); 

// 
// write current configuration 
// 

fprintf(outdatafile, "%i\n", itime); 

i£ (red_command.red_command_flag == 0) { 
for (i=l; i<=red.irednum; ++i) { 

fprintf(outdatafile, "%i  %i  %i\n", red.rstatusli], red.redx[i], red.redyti]); 
) 

} 
else( 

for (i=l; i<=red.irednum; ++i) { 
fprintf(outdatafile, "%i  %i  %i  %i\n", red.rstatusli], red.redx[i], 

red.redy[i], red_command.red command[i]); 
) 
fprintf(outdatafile, "%i\n", red_command.num_red_commanders); 
for (i=l; i<= red_command.num„red_commanders; ++i){ 

fprintf(outdatafile, "%i  %i  %i\n", red_command.red_ISAACA_commander[i], 
red_command.red__command_R[i], red_command.red_num_under_command[i]); 

for (j=l; j<=red_command.red_num_under_command[i]; ++j){ 
fprintf(outdatafile, "%i\n", red_command.red_ISAACA_under_command[i][j]); 

) 
} 

} 

if (blue_command.blue_command_flag == 0) { 
for (i=l; i<=blue.ibluenum; ++i) { 

fprintf(outdatafile, "%i  %i  %i\n", blue.bstatus[i], blue.bluex[i], blue.bluey[ij); 
} 

} 
else{ 

for {i=l; i<=blue.ibluenum; ++i) { 
fprintf(outdatafile, "%i  %i  %i  %i\n", blue.bstatus[i], blue.bluexti], 

blue.bluey[ i ], blue_command.blue_command[i]); 
) 
fprintf(outdatafile, "%i\n", blue_command.num_blue_commanders); 
for (i=l; i<= blue„command.num_blue_commanders; ++i){ 

fprintf(outdatafile, "%i  %i  %i\n", blue_command.blue_ISAACA_commander[i], 
blue_command.blue_command_JR[i], blue_command.blue_num_under_command[i]); 

for (j=l; j<=blue_command.blue_num_under_command[i]; ++j){ 
fprintf(outdatafile, "%i\n", blue_command.blue_ISAACA_under_command[i}[j]); 

} 
) 

} 

fclose(outdatafile); 
goto wait; 
break; 

case 'n': // restart with random seed 
// close statistics output files 
if (stats.stat_flag > 0){ 

for (ii=l; ii<=13; ii++){ 
fclose(stat_data[ii]); 

} 
) 
// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red_squad = 1; 
blue.display_blue_sguad = 1; 
battle.squad_color_flag = 0; 

// re-set fratricide counters 
battle. red__f rat_count=0 ; 
battle.blue_frat_count=0; 

// re-set defense counters 
if (rea.defense_flag==0){ 

for(ii=l;ii<=fed.irednum;ii++)red.defense clock[ii]=0; 
} 
if (blue.defense_flag==0){ 

for(ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0; 
} 

// reset command structure 
reä_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate_color_flag = 0; 

// initialize for run 
goto changeoption; 
break ,- 

case 'c': // paint 'command structure' 
if ( (red_GC.red_GC_flag == 1 &&  red_command.num_red_commanders > 1 ) j j 

(blue_GC.blue_GC_flag == 1 && blue_command.num_blue„commanders > 1) ){ 
red_command.red_subordinate_color_flag = 

(red__command.red_subordinate_color_flag + l) % 9; 
blue_command.blue_subordinate_color_flag = 
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(blue_command.blue_subordinate_color_.flag + 1)   % 9; 
} 
else{ 

if   <red_command.red_comrriand__flag == 1  ) { 
rcd_conimand. red_subordinate_color_f lag = 

(red_command.red_subordinate_.color_£lag + 1) % 8; 
} 
if (blue_commanä.blue_command_flag == 1 ){ 
blue_command.blue_subordinate_color_flag = 

(blue_command.blue_subordinate_color_flag + 1) % 8; 
} 

> 
_clearscreen( „GVIEWPORT ); 
UPDATEPICTURE(stat_data, icime, red_GC.red_GC_flag, 

blue_GC.blue_GC_flag,&red_command, _blue„command, 
„battle, &red, &blue, &stats); 

goto wait; 
break; 

case 'd*: // open data file 
idata = 2;  // set data input flag to read data file 
_getvideoconfig( &vc ); 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465); 
„clearscreen( _GVIEWPORT ); 
_setviewport(1,1,639,479); 
_moveto( 205, 450 ) ; 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ); 
_outgtext(u  Input-data file name ? "}; 
_settextposition( 29, 52 ),- 

) 
else{ 

_setviewport(260,575,680,590) ; 
_clearscreen( _GVIEWPORT ); 
_sefcviewport(l,1,799,599); 
_moveto( 270, 577 ); 
_setcolor( 14,) ; 
_setgtextvector( 1, 0 ); 
_outgtext("  Input-data file name ? ") ; 
_settextposition( 37, 61 ); 

} 
scanf("%s", &filename); 
_clearscreen( _GCLEARSCREEN ); 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red„squad = 1; 
blue.display_blue__squad = 1; 
battle.squad_color_flag = 0; 

// Re-seed random number generator 
idum=-31415926; 
zran=ranl(&idum); 

// reset command structure 
red_command.red__subordinate_color_f lag = 0; 
blue_command.blue_,subordinate__color_flag = 0; 

//**** *************** *********************************** 
II 
It Read input from data file 
// //***** ************ ****************** ***** * 
INPUT_FILE_DATA(filename, fcstats, &red_GC, &blue_GC, &red_command, 

&blue_command, &battle, &red, &blue, &idum); 
goto changeoption; 
break ,- 

case 'p': // open 'playback' (".out) file 
// close statistics output files 
if (stats.stat_flag > 0){ 

for (ii=l; ii<=13; ii++)C 
fclose(stat_data[ii]); 

} 
) 
battle.ichoice = 2;  // set select run option flag to playback file 
_getvideoconfig( &vc ); 
if (vc.numxpixels < 641} { // then in VGA mode 

„setviewport(200,455,525,465}; 
„clearscreent „GVIEWPORT ); 
_setviewport(1,1,639,479) ; 
_moveto( 205, 450 ); 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ); 
_outgtext(" Playback-data file name ? "); 
_settextposition( 29, 54 ); 

} 
else{ 

_setviewport(260,575,680,590) ; 
_clearscreen( _GVIEWPORT ); 
_setviewport{l,1,799,599); 
_moveto{ 270, 577 ); 
_setcolor( 14 ); 
„setgtextvector( 1, 0 ); 
_outgtext(" Playback-data file name ? "); 
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_settextposition{ 37, 63 ); 
) 
scanf("%s", &plotfilename); 
_clearscreen( _GCLEARSCREEN ); 
goto playagain; 
break; 

case 's': // single-step screen update 
battle.default_speed = 2; 
break; 

case 'f: // fast screen update 
battle.default_speed = 1; 
break; 

case 'q': 
_getvideoconfig{ &vc ); 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport{200,455,525,465); 
_clearscreen{ _GVIEWPORT ); 
„setviewport{1,1,639,479); 
_moveto{ 205,"455 ); 
_setcolor{ 14 ); 
_setgtextvector( 1, 0 ); 
outgtextf"      Run Terminated"); 

} 
else{ // in SVGA mode 

_setviewport{260,575,680,590); 
_clearscreen{ _GVIEWPORT ); 
_setviewport{1,1,799,599); 
__moveto( 270, 575 ); 
_setcolor( 14 ); 
_setgtextvector{ 1, 0 ); 
_outgtext("      Run Terminated"); 

) 
if (battle.ioutdata > 1){ 

fclose(outdatafile); 
} 
if (stats.stat_flag > 0){ 

for (ii=l; ii<=13; ii++){ 
fclose(stat_data[ii]); 

> 
} 

// reset command structure 
red_command.red„subordinate_color_flag = 0; 
blue_command.blue_subordinate„color_flag = 0; 

opwaitq:       bufferq = _getch(); 
switch {bufferq) { 

case 'r': 
goto playagain; 
break; 

case !d': 
buffer=bufferq; 
goto options; 
break; 

case 'p': 
buffer=bufferq; 
goto options; 
break; 

case 'q': 
goto startagain; 
break; 

default: 
goto opwaitq; 

) 
break; 

case 'o': // options for making 'on-the-fly' parameter changes 

//*************«*.**.*****.*.*********.***.***. .*.**** 
// 
// Display prompt screen and make changes 
// 
irun_choice = PROMPT_SCREEN{&battle, &red, &blue, &red_GC, &blue_GC, 

&red_command, &blue_command, &stats, &idum); 

// re-set fratricide counters 
battle.red_frat_count=0; 
battle.blue_frat_count=0; 

// * *  
// 
//   if irun_choice = 2 (start new run with new parameters) and battle.ioutdata>l 
//   then write new data to file 
// //*****.**********.. ******* ***** * ****  
if (irun_choice == 2 && battle.ioutdata > 1){ 

fclose(outdatafile); 

if ( {outdatafile = fopen{outfilename, "wt")) == NULL ){ 
printf(" Cannot open data file.Xn"); 
exit(l); 

) 
WRITE_OUT_FILE{outdatafile, red_GC.red_GC_flag, blue_GC.blue_GC_flag, 

&red_command, &blue_command, fibattle, &red, &blue); 

285 



Appendix C: Source Code for ISAAC 

} 

if (irun_choice > 1){ 
// close statistics output files 
if (stats.stat_flag > 0){ 

for (ii=l; ii<=13; ii++){ 
fclose(stat_data[ii]); 

} 
} 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red_squad = 1; 
blue.display_blue_squad = 1; 
battle.squad_color_flag = 0; 

if (irun_choice == 3){ 
// Re-seed using old seed value 
idum *= -31415926; 
zran=ranl(&idum); 

} 

// re-set defense counters 
if (red.defense_flag—0){ 

for (ii=l;ii<=red.irednum,-ii++)red.defense_clock[iiJ=0; 

} 
if (blue.defense_flag==0)( 

for{ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0; 

) 
// reset command structure coloring flags 
red_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate_color_.flag = 0; 

// initialize for next run 
goto changeoption; 

) 
else{ 

_setbkcolor ( _BLACK ); 
_clearscreen(.„GCLEARSCREEN ); 
if {battle.ioutdata != 2){ 

//***************«******.*...*.»****.******* ** 
// 
// Update data on graphics screen 
// 
// ******* * .*******w*. **.**. .***»**» 

SCREENDATA(itime, idata, filename, fcred_comniand, 
&blue_command, Stbattle, tred, &blue) ; 

} 
} 
break; 

case 't': 
if (itrace " 0){ 

itrace = 1; // trace 'on' 
} 
else( 

itrace = 0; // trace 'off 
} 
break; 

case 'r*; // restart With random seed #1 (re-run) 
// close statistics output files 
if (stats.stat_flag > 0){ 

for (ii=l; ii<=13; ii++){ 
fclose(stat_data[ii]); 

} 
} 

// re-set fratricide counters 
battle.red_frat_count=0; 
battle.blue_frat_count=0; 

// re-set defense counters 
if (red.defense_flag==0){ 

for (ii=l;ii<=red.irednum,-ii++)red.defense_clock[ii]=0; 
} 
if (blue.defense_flag==0){ 

for(ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0; 
} 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red_squad = 1; 
blue.display_blue_squad = 1; 
battle.sguad_color_flag = 0; 

// initialize "playback" flag 
playterm = 0; 

// Re-seed random number generator 
idum=-31415926; 
zran=ranl(&idum); 
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// reset command structure coloring flags 
reä_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate_color„flag = 0; 

// re-initialize all data 
INPUT_FILE_jDATA(filename,   fcstats,   &red_GC,   &blue_GC,   &red_command, 

&blue_command,   sbattle,   &red,   &blue,   Sidum) ,- 

// re-run 
goto changeoption; 
break; 

case '1': // close statistics files 
for (ii=l; ii<=13; ii++){ 

fclose(stat_data[iiJ); 
} 
// reset stat_flag 
stats.stat_flag = 0; 
_getvideoconfig{ &vc ); 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465}; 
_clearscreen( _GVIEWPORT ); 
_setviewport(140,48,525,428); 

} 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ); 
_setviewport(120,50,680,550); 

} 
goto wait; 
break; 

case 'a': // set flag for measuring and recording run statistics 
_getvideoconfig{ &vc ); 
// stat_flag = 0 < > no files open, no stats 
// stat_flag = 1 < >   files open,   stats 
// stat_flag = 2 < >   files open, no stats 
switch(stats.stat_flag){ 

case 0: 
stats.stat_flag = 1; 
// open output stat files 
if { (stat_data[l] = fopenfstats_l.dat", "wt")) == NULL 

{stat_data[2] = fopen("stats_2.dat", "wt")) == NULL 
(stat_data[3] = fopen("stats_3.dat", "wt")) == NULL 
<stat_data[4] = fopen("stats_4.dat", "wt")) == NULL 
(stat„data[5] = fopen("stats_5.dat", "wt")) == NULL 
<stat_data[6] = fopenf"stats_6.dat", "wt")) == NULL 
(stat_data[7] = fopen("stats_7.dat", "wt")) == NULL 
<stat_data[8] = fopenCstats_8.dat", "wt")) == NULL 
(stat_data[9] = fopenCstats_9.dat", "wt")) == NULL 
(stat_data[10] = fopenCstats_10.dat", "wt")) ■= NULL 
(stat_data[ll] = fopen("stats_ll.dat", "wtu)> == NULL 
(stat_data[12] = fopen{"stats_12.dat", "wt")) == NULL 
(stat_data[131 = fopenfstats_13.dat", "wt")) == NULL){ 

printft" Cannot open data file.\n"); 
exit(l); 

} 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465); 
_clearscreen( _GVIEWPORT ); 
„setviewport(1,1,639,479); 
_moveto( 205, 450 ) ,- 
„setcolor( 14 ); 
_setgtextvector( 1, 0 ) ; 
__outgtext("Statistics being calculated ... "),- 
_setviewport{140/48,525,428); 

} 
else{ ' 

„setviewport(260/575,680,590); 
_clearscreen{ _GVIEWPORT ); 
_setviewport{1,1,799,599); 
_moveto( 270, 577 ); 
_setcolor( 14 ); 
_setgtextvector( 1,   0 ); 
_outgtext("Statistics being calculated   "); 
_setviewport(120,50,680,550); 

) 
break; 

case 1: 
stats.stat_flag = 2; 
_getvideoconfig( &vc ) ; 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465); 
_clearscreen( _GVIEWPORT ); 
_setviewport{l,1,639,479); 
_moveto( 200, 450 ); 
_setcolor( 14 ); 
„setgtextvector(1,0); 
_6utgtext("Statistics calculations paused ... "); 
_setviewport(140,48,525,428); 

} 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,1,799,599); 
_moveto( 260, 577 ); 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ); 
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_outgtext("Statistics calculations paused ... " 
_setviewport(120,50,680,550); 

} 
break; 

case 2: 
stats.stat_flag = 1; 
_getvideoconfig( five ); 
if (vc.numxpixels < 641) { // then in VGA mode 

_setviewport(200,455,525,465); 
_clearscreen ( „GVIEWPORT ) ; 
_setviewport(l,1,639,479); 
_moveto( 205, 450 ); 
_setcolor( 14 ); 
_setgtextvector{ 1, 0 ); 
_outgtext("Statistics being calculated ... "} ; 
_setviewport(140,48,525,428); 

) 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,l,799,599) ; 
_jnoveto( 270, 577 ); 
_setcolor( 14 ); 
„setgtextvector( 1, 0 ) ; 
__outgtext("Statistics being calculated ... "); 
_setviewport(120,50,680,550); 

) 
break; 

) 
goto wait; 
break; 

) 
//.*.......*...«• .............. « ............„„.„.„..  
// 
// Determine what blue isaacs are in red's neighborhood 
// //................................  
for (i=l; i<=red.irednum; ++i) { 

ibinrnum = BLUEIHEEDI i, sred, Sblue, ilblbinr ); 
} 

//*****  
// 
// Determine what red isaacs are in blue's neighborhood 
// 

for (i=l; i<=blue.ibluenum; ++i) { 
irinbnum = REDINBLUEI i, Sred, Sblue, ilblrinb) ; 

) 

// 
// Adjudicate combat attrition 
// //...........................  
if (battle.max_combat_flag == 1){ // then no limit on number of 

// simultaneous engagements 

COMEATt sbattle, Sred, sblue, Jkidum, ilblbinr, ilblrinb); 
> 
else{ // use routine that puts limit on the number of 

// simultaneous engagements 
COMBAT_2( ibattle, Sired, Stblue, &idum, ilblbinr, ilblrinb); 

} 

//*** ***  
// 
// Update local command structure and adjudicate local 
// command 'promotion' in case of combat 'kill' 
// //...... ,..,.,,,..,................  
if ( red_command.red_command_flag == 1 ) { 

RED_PROMOTIONS(&red_command, &red, &idum); 
) 
if ( blue_command.blue„command_flag == 1 ) { 

BLUE_PROMOTI0NS(sblue_command, iblue, Sidum) ; 
) 
if (battle.ioutdata != 2){ 

//..................  
// 
// Update picture; first clear screen if trace is off 
// //.........................  
if (itrace == 0){ 

_clearscreen( _GVIEWPORT ); 
) 
//*** «. ".  
// 
// Update picture on graphics screen 

//  
UPDATEPlCTURE(stat_data, itime, red_GC.red_GC_flag, blue_GC.blue_GC_flag, 
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&red„command,   &blue_command,  &battle,   &red,   &blue,   fcstats); 
> 

// 
// Output data to file 
// //>*.«•»•*.•»>  
if (battle.ioutdata > 1)( //,.........,.....  

// 
// If termination condition is 1 (till one isaac reaches enemy goal) or 
// it is 2 (continue till both sides exhausted) + the alloted time has not 
// yet been reached then write current RED and BLUE states to file 
// //....................  
if (  battle, itermcond == 1 [ | 

( battle.itermcond == 2 Si itime <= iternum) ){ 

if (battle.ioutdata == 2){ 
_setviewport(l,200,799,300); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,l,799,599); 
_setcolor( 15 ) ; 
_unregisterf onts () ; 
„registerfonts I "sserife.FON" ); 
strcatl strcatl strcpyl list, "t'" ), "sserife"), "'"); 
strcatt list, "h30w24bv" ); 
_getfontinfo( &fi ); 
_setfont( list ); 

xfon = (vc.numxpixels / 2) - („getgtextextent("time = xxx") / 2); 
__moveto( xfon, 250 ) ; 
_outgtext ("time = "); 
_outgtext( itoa( itime, bb, 10) ) ; 
_unregisterfonts(); 
_registerfonts( "oemlO.FON" ); 
strcatl strcat( strcpyl list, -t'" ), "oemlO"), "'"); 
strcatl list, "h30w24bv" ); 
_getfontinfo( &fi ); 
_setfont( list ); 

} 

fprintf(outdatafile, "%i\n", itime); 

if (red_command.red_command_flag =- 0) { 
for (i=l; i<=red.irednum; ++i) { 

fprintf(outdatafile, "%i  %i  %i\n", red.rstatus[il, red.redxli), red.redyli]); 
} 

) 
else{ 

for (i=l; i<=red.irednum; ++i) ( 
fprintf(outdatafile, '%i  %i  %i  %i\n", red.rstatus[i], red.redxli), 

red.redy[i], red_command.red„command[i]); 
) 
fprintf (outdatafile, "%i\n", red_command.num_red_commanders) ; 
for (i=l; i<= red_command.num_red_commanders; ++i) ( 

fprintf (outdatafile, "%i  %i  %i\n", red_cominand.red_ISAACA_commander[i], 
red_command.red„command_R[i], red_command.red_num_under_command[i]); 

for (j=l; j<=red_command.red_num_under„command(i]; ++j)( 
fprintf(outdatafile, '%i\n", red_command.red_ISAACA_under_commandti][j]); 

) 
} 

) 
if (blue_command.blue_command_flag == 0) ( 

for (i=l; i<=blue.ibluenum; ++i) ( 
fprintf (outdatafile, "%i  %i  %i\n", blue.bstatus til, blue.bluex(i], blue.blueyli]) ; 

} 
) 
else{ 

for (i=l; i<=blue.ibluenum; ++i) { 
fprintf(outdatafile, "%i  %i  %i  %i\n", blue.bstatusEi], blue.bluex[i], 

blue.blueyli], blue_command.blue_command[i]) ; 
) 
fprintf (outdatafile, "%i\n", blue„command.num_blue_commanders) ; 
for (i=l; i<= blue_command.num_blue_commanders; ++i) { 

fprintf (outdatafile, "%i  %i  %i\n", blue_command.blue_ISAACA_commander[i], 
blue_command. blue_command_R [ i ], blue_command. blue_num„under_command [ i)) ; 

for (j=l; j<=blue_command.blue_num_under_command[i]; ++j)( 
fprintf (outdatafile, "%i\n", blue_command.blue_ISAACA_under_command[i] [j]) ; 

) 
) 

) 
) 
else{ 

igoal=3; 
goto goal; 

) 
) 
//............  
// 
// RED local commanders generate ISAACA goals 
// //.............,.........................  
if (red_command.red_command_flag == 1}{ 
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for (j=1; j <=red_command. num_red_commanders; ++j) { 

if {red_command.red_command_patch == 1){ 
RED_L0CAL_.C0MMAND._1 {j, itime, &red_GC, &red_command, &blue_command, 

fibattle. Sired, &blue, &idum); 
} 
else{ 

if {red_command.red_command_patch == 2){ 
RED_L0CAL_C0MMAND_2{j, itime, &red_command, &blue_command, -battle, &r ed, 

&blue, &idum); 
} 

} 

) 
//** *************** * *»..,*.***,..»*t***.**t.***.*, 

// 
// RED global commanders generate LC goals 
// 

if (red_GC.red_GC_flag == 1}{ 

RED_SWATH_AREA(battle.isize, &red_GC, &red_command, &red); 
RED_SWATH_DENSITY(battle.isize, &red_GC, &red_command, &red, Sblue); 
RED_GLOBAL_COMMAND(&red_GC, &red_command, &red, &idum); 

//*** ************* ****************************** 
// 
// UPDATE RED ISAACAs 
// //************** **************** **  

for {j=l; j<=red.irednum; ++j) { 

//*****************.*************************.*..******  
// 
// Get randomized label 
// //**********.***************************.**.*******.***.**** 
i = redlabel_randomized[j]; 

,/******************** ***********************  
// 
// Do only if red ISAAC is alive or injured 
// 
//**** * ********************* *  
if ( red.rstatusEi] > 0 )  { 

//** ***************************** ** * ***** 
// 
// Get local goals from local commander 
// //****.********* *********** ********* ****************  
if (red_command.red_command._flag == 1 && // if command flag is set 

red_command.reds_commander[i] != 0 ){ // if ith ISAACA has a local commander 
red_command.red_local_goal_x[i] = 

red„command.red_commanö_goal_x[red_command.reds_commander[i]]; 
red__command. red_local_goal_y [ i ] = 

red_cornmand.red_command_goal_y[red_command.reds_commander[i] ] ,- 
} 

//**************.***»********.*********************.*********************** 
// 
// What does the ith red isaac see? 
// 
// - irinrnum : number of reds in red 
// - ibinrnum : number of blue in red 
// - iradvnum : number of reds within advance range 
// - ibinrinjnum : number of injured blues 
// - irinrinjnum : number of injured reds 
// //**********************.*************.************************************* 
irinrnum = 0; 
ibinrnum = 0; 
iradvnum = MAXISAACNUM; 
ibinrinjnum = 0; 
irinrinjnum = 0; 

if (red_command.red_command„flag == 1 && // if command flag is set 
red_.command. red_command [ i ] — 2 ){   //if ith ISAACA is a local commander 
RED_C0MMAND_SENS0R(&irinrnum, &ibinrnum, &iradvnum, &ibinrinjnum, 

&irinrinjnum, i, &red_command, &red, &blue, ilblbinr); 
} 
else{ // use function for subordinate ISAACA 

RED_SENS0R(&irinrnum, Scibinrnum, &iradvnum, &ibinrinjnum, &irinrinjnum, i, 
&red, &blue, ilblbinr); 

} 

//.**.****** .***......************.*********** ***************** 
// 
//  Adapt red weights; i.e. determine values for red.wired, red.w2red, 
//  red.w3red, red.w4red, red.w5red, red.w6red to be used for this time step 
// //**.************ * ************.**********.*******.*.*.************ 
if ( red_command.red_command_flag == 0 |j 
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red_command.red_command_flag == 1 && red_command.red_command[i] < 2){ 
ADAPT_RED_ISAACA_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, Sred_command, 

Sred); 
> 
if ( red„command.reä_command_flag == 1 && red_command.reä_command[i) == 2){ 

ADAPT_RED„LC_WEIGHTS (i, irinrnum, ibinrnum, iradvnum, &red_command, 
sred); 

} 

if ( red_GC.red_GC_flag ~ 1 ){ 
ADAPT_RED_GC_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, &red_GC, 

&red_command, &red); 
) 

// 
// Are Communications to be used between ISAACAs? 
// ,/.........„...„.......................................................... 
if (red.red_COMM_flag != 0) { // if COMMs 'on' then get COMM data 

RED_COMM_INFO(i, ired, Sblue); 
> 
//.**«..».•»♦.••  

// 
//        Compute expected penalty for each possible move; 
//        isaac's move will be into square with least penalty 
// 

igoalflag=0; // if remains equal to 0 then goal not reached 

// 
// Initialize minimum sum value 
// //....*.«  
zmin = (float)(99999.); 

// get movement range 
imrr = red.iredmoverangeti]; 
if (red.rstatusli] == 1) imrr = 1; // if injured, make sure max range equals 1 

if (red.red_COMM_flag == 1) { // use 'COMM* routine 
zmin = COMPUTEREDPENALTY_COMM(i, imrr, fiigoalflag, irinrinjnum, ibinrinjnum, 

zmin, iflag, z, &red_command, &blue_command, fibattle, &red, &blue); 
) 
else{ 

if ( red_GC.red_GC_flag == 0 ) { 
zmin = COMPÜTEREDPENALTY(i, imrr, &igoalflag, irinrinjnum, ibinrinjnum, 

zmin, iflag, z, &red_command, &blue_command, abattle, &red, &blue); 
> 
else{ 

zmin = COMPUTEREDPENALTY_GC(i, imrr, iigoalflag, irinrinjnum, ibinrinjnum, 
zmin, iflag, z, &red_GC, &blue_GC, &red_command, &blue_command, 
ibattle, ired, sblue); 

) 
> 

if ( igoalflag == 1) { 
igoal = 1; 
goto goal; 

) 
//***  
// 
//    If zmin = 99999 then there are no viable moves —> do nothing 
// //.............  
if ( zmin == 99999. ){ 
// 
//do nothing 
// 

if (imrr == 1){ 
imove = 5; 

} 
else( 

imove = 13; 
) 

) 
else( //..........  
// 
//       See what possible local moves correspond to zmin 
// //...............  

imc = 0; // initialize local count variable 
for (imx = - imrr; imx <== imrr; ++imx) { 

for (imy = - imrr; imy <= imrr; ++imy) ( 
if (iflaglimx + 2] [imy + 2J == 1 iSt 

z[imx + 2][imy + 2] == zmin)( 
// add another candidate move to count 
++imc; 
// select candidate move 
if (imrr == 1){ 
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// 
// 1 = <-l,+l)   I   2 = (0,+l)   I   3 = (+1.+1) 
//   -   
// 4 = (-1,0)    I   5 = (0,0)    I   6 = (+1,0) 
//     
// 7 = (-1,-1)   |   8 - (0,-1)   |   9 = (+1,-1) 
// 
imovecand [imc] = imx + 5 - 3 * imy; 

) 
else( 

// 
// 1 = (-2,+2)   |           |   5 = (+2,+2) 
//     
//'              |   13 = (0,0)  |        
//     
// 21 = (-2,-2)  |           |  25 = (+2,-2) 
// 
imovecand [imc] = imx + 13 - 5 * imy; 

) 
//*** *.*...  
// 
//     Actual move is randomly selected from among the imc candidates 
// //• *.  

if (imc == 1){ 
imove = imovecand [ 1 ]; 
) 

else{ 
zmoveprob = (float) (0,0001 * getrandomd, 10000,fcidum)) ; 
for (im = 1; im < imc + 1; ++im) ( 

if (zmoveprob > (float)(im - 1) / (float)(imc) && 
zmoveprob <= (float) (im) / (float) (imc) )( 
imove = imovecand [ im]; 

} 
} 

) 
) 
//..........................  
// 
// Move red to new square for which penalty is minimum 
// //.,.....  
MOVERED (i, imrr, imove, Stbattle, &red) ; 

) // end if red.rstatus[i]!=0 test 

} // end i = 1 to red.irednum loop 

//  
// 
// BLUE local commanders generate local goals 
// /,..................................  
if (blue_command.blue_command_flag == 1){ 

for (j=l; j<=blue_command.num__blue_commanders; ++j) { 
if (blue_command.blue_command_patch == 1) { 

BLUE_L0CAL_C0MMAND„1 (j, itime, &blue_GC, &red_command, &blue_command, 
&battle, &red, fcblue, &idum); 

) 
else( 

if (blue_command.blue_command_patch == 2){ 
BLUE_LOCAL_COMMAND_2(j, itime, fcred_command, &blue_command, 

&battle, &red, Scblue, &idum) ; 
} 

} 
) 

} 
//...................................  
// 
// BLUE global commanders generate LC goals 
// //..........  
if (blue_GC.blue_GC_flag == 1){ 

BLUE_SWATH_AREA(battle.isize, &blue_GC, &blue_command, sblue); 
BLUE_SWATH_DENSITY(battle.isize, &blue_J3C, &blue_command, &red, fcblue) ; 
BLUE_GLOBAL_COMMAND(&blue_GC, &blue_command, &blue, &idum) ; 

// **** ..—.  
// 
// UPDATE BLUE ISAACAs 
// //  

for (j=l; j<=blue.ibluenum; ++j) ( 

//,..................    
// 
// Get randomized label 
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// 
//* 

bluelabel_randomized[j) ; 

//..*. 
// 
// 
// 

if ( blue.bstatusli] > 0 ){ 

// 
// 
// 
//« 
if 

Do only if blue ISAAC is alive or injured 

Get local goals from local commander 

1 &&// if command flag is set 
0 ){// if ith ISAACA has a local commander 

} 

{blue_command.blue_command_flag == 
blue_command.blues_commander [i] ! 
blue_command.blue_local_goal_x[i] 

blue_command.blue_command_goal_x[blue_command.blues_commander[i] ] ; 
blue_command.blue_local_goal_y[i] = 

blue_command.blue_command_goal_y[blue_command.blues_commander[i] ]; 

What does the ith blue isaac see? 

ibinbnum 
irinbnum 
ibadvnum 
irinbinjnum 
ibinbinjnum 

number of blues in blue 
number of reds in blue 
number of blues within advance range 
number of injured reds 
number of injured blues 

//....»..••*. 
// 
// 
// 
// 
// 
// 
// 
// 
// 
//  
ibinbnum = 0; 
irinbnum = 0; 
ibadvnum = MAXISAAOTOM; 
irinbinjnum = 0; 
ibinbinjnum = 0; 

if (blue„command.blue_command_flag == 1 && // if command flag is set 
blue_command.blue_command[i] s== 2 ) {   //if ith ISAACA is a local commander 

BLUE_COMMAND_SENSOR(&ibinbnum, fcirinbnum, Sibadvnum, Sirinbinjnum, &ibinbinjnum, 
i, &blue_command, &red, fcblue, ilblrinb); 

) 
else{ // use function for subordinate ISAACA 

BLUE_SENSOR(&ibinbnum, &irinbnum, fcibadvnum, &irinbinjnum, &ibinbinjnum, i, 
&red, tblue, ilblrinb); 

} 

Adapt blue weights; i.e. determine values for blue.wlblue, blue.w2blue, 
blue.w3blue, blue.w4blue, blue.w5blue, blue.wSblue to be used for this time step 

( blue_command.blue_command_flag == 0 | | 
blue_command.blue_command_flag == 1 && blue_command.blue_command[i] < 2){ 

ADAPT_BLUE_ISAACA_WEIGHTS{i, ibinbnum, irinbnum, ibadvnum, &blue_command, 
&blue); 

Are communications to be used between ISAACAs? 

if ( blue_command.blue_command_flag == 1 && blue_command.blue_command[i] == 2){ 
ADAPT_BLUE_LC__WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, &blue_command, 

&blue); 
} 

if ( blue_GC.blue_GC_flag == 1 ){ 
ADAPT_BLUE_GC_WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, &blue„GC, 

&blue_command, tblue) ,- 
) 
//...................,,........... » 
// 
// 
// 

if (blue.blue_COMM_flag != 0) { // if COMMs 'on' then get COMM data 
BLUE_C0MM_INF0(i, ired, Sblue); 

} 

//..........  .............. 
// 
//        Compute expected penalty for each possible move; 
//        isaac's move will be into square with least penalty 
// 
//*"**** * **** " * ****  
igoalflag=0; // if remains equal to 0 then goal not reached 

//**** * «-  
// 
// Initialize minimum sum value 
// //  
zmin = (float)(99999.); 
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// get movement range 
imbr = blue.ibluemoverangeti]; 
if (blue.bstatusli] == 1) imbr = 1; // if injured, make sure max range equals 1 

if (blue.blue_COMM_flag == 1) { // use 'COMM' routine 
zmin = COMPUTEBLUEPENALTY_COMM(i, imbr, iigoalflag, irinbinjnum, ibinbinjnum, 

zmin, iflag, z, &red_command, &blue_command, 
Sbattle, &red, &blue); 

> 
else{ 

if ( blue_GC.blue_GC_flag == 0 ){ 
zmin = COMPUTEBLUEPENALTY(i, imbr, sigoalflag, irinbinjnum, ibinbinjnum, 

zmin, iflag, z, &red_command, &blue_command, 
sbattle, Sred, sblue); 

> 
else{ 

zmin = COMPUTEBLUEPENALTY_GC(i, imbr, iigoalflag, irinbinjnum, ibinbinjnum, 
zmin, iflag, z, &red_GC, &blue_GC, &red_command, 
&blue_command, fibattle, &red, fcblue); 

} 
) 
if ( igoalflag == 2) { 

igoal = 2; 
goto goal; 

} 

//.»•.•«..«».. **  
// 
//    If zmin = 99999 then there are no viable moves —> do nothing 
// //............  
if ( zmin == 99999. ){ 
// 
//do nothing 
// 

if (imbr == 1){ 
imove = 5; 

} 
else{ 

imove = 13 ; 
) 

} 
else{ 
/y...............................................  

// 
//       See what possible local moves correspond to zmin 
// //........  

imc = 0; 
for (imx = -imbr; imx <= imbr; ++imx) { 

for (imy = -imbr; imy <= imbr; ++imy) { 
if (iflaglimx + 2][imy + 2] == 1 && 

z[imx + 2][imy + 2] == zmin)( 
// add another candidate move to count 
+-t-imc; 
// select candidate move 
if (imbr == 1){ 

// 
//    1 = (-1.+1)   |  2 = (0,+l)   |  3 » (+1,+1) 
//          
//    4 = (-1,0)    |   5 = (0,0)    |   6 = (+1,0) 
//          
//    7 = (-1,-1)   |   8 = (0,-1)   |   9 = (+1,-1) 
// 
imovecandlimc] = imx + 5 - 3 * imy; 

) 
else{ 

// 
//    1 = (-2,+2)   |         |  5 = (+2,+2) 
//        
//              |   13 = (0,0)  |        
//      
//    21 = (-2,-2)  |           |  25 = (+2,-2) 
// 
imovecandlimc] = imx + 13 - 5 * imy; 

) 

) 
) 

) 

//*****  
// 
//     Actual move is randomly selected from among the imc candidates 
// 

if (imc == 1){ 
imove = imovecand [11; 

) 
else( 

zmoveprob = (float) (0.0001 * getrandomd, 10000,&idum)) ,- 
for (im=l; im<imc+l; ++im) ( 

if (zmoveprob > (float)(im - 1) / (float)(imc) && 
zmoveprob <= (float)(im) / (float)(imc) )( 
imove = imovecand[im]; 

) 
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} 
} 

} // end if zmin=99999 

// *********** ************** **** *** 
// 
// Move red to new square for which penalty is minimum 
// 

MOVEBLUE  <i,   imbr,   imove,   Stbattle,   fcblue); 

}   // end if blue.bstatus[i]!=0 test 

}  // end i = 1 to blue.ibluenum loop 

goto start; 

/;******************* *********** ************ **. 
// 
// Run is terminated 
// // ******** ************* ***  

goal: 
if (battle.ioutdata > 1){ 

fclose(outdatafile); 
if ( (battle.itermcond — 2 && itime == iternum) j] 

igoal == 3){ 
_getvideoconfig( &vc }; 
if (vc.numxpixels < 641) { // then use VGA value 

„setviewport{200,455,525,465); 
_clearscreen( _GVIEWPORT ); 
_setviewport(1,1,639,479); 
_moveto( 205, 455 ); 
_setcolor( 14 }; 
_setgtextvector{ 1, 0 ); 
_outgtext(" Run Complete"); 
battle. default_speed = 2; 
goto wait; 

) 
else{ 

_setviewport(260,575,680,590); 
_clearscreen{ „GVIEWPORT ); 
^setviewportd,1,799,599) ; 
_moveto( 270, 575 ); 
_setcolor( 14 ) ,- 
_setgtextvector( 1, 0 ); 
_outgtext("        Run Complete"); 
battle.default_speed = 2; 
goto wait; 

) 
buffer = _getch(); 
if (buffer == 'r') { 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display__red_squad = 1; 
blue.display_blue_squad = 1; 
battle.squad_color„flag = 0; 

// Re-seed random number generator 
idum=-31415926; 
zran=ranl(&idum); 

// reset command structure coloring flags 
red_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate_color_flag = 0; 

// initialize for re-run 
goto changeoption,- 

) 
else{ 

_clearscreen( _GCLEARSCREEN ); 
goto startagain; 

} 

} 
} 

if (igoal==l){ 
_getvideoconfig( &vc ); 
if (vc.numxpixels < 641) { // then use VGA value 

_setviewport{200,455,'525,465) ; 
_clearscreen( _GVIEWPORT ) ,- 
_setviewport(l,1,639,479); 
_moveto{ 205, 455 ); 
_setcolor( 14 ); 
_setgtextvector ( 1, 0 ) ,- 

_outgtext(" Run Complete...RED attains goal"); 
battle.default_speed = 2; 
goto wait; 

) 
else{ 

_setviewport(260,575,680,590); 
_clearscreen( „GVIEWPORT ); 
_setviewport(1,1,799,599); 
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) 

_movet0( 270, 575 ); 
_setcolor{ 14 ) ; 
_setgtextvector{ 1, 0 ); 
_outgtext(" Run Complete — RED attains goal"); 
battle.default_speed = 2; 
goto wait; 

buffer = _getch(); 
if {buffer == 'r1) { 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red„squad = 1; 
blue.display_blue„squad = 1; 
battle.squad_color_flag = 0; 

// Re-seed random number generator 
idum=-31415926; 
zran=ranl{&idum); 

// reset command structure coloring flags 
red_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate_color_flag = 0; 

// initialize for re-run 
goto changeoption; 

} 
else{ 

_clearscreen( _GCLEARSCREEN ),- 
goto startagain; 

) 
} 
else{ 

if {igoal == 2){ 
_getvideoconfig{ &vc ); 
if {vc.numxpixels < 641) { // then use VGA value 

_setviewport{200,455,525,465); 
_clearscreen{ „GVIEWPORT ); 
_setviewport{1*1/639,479); 
_moveto( 205, 455 ); 
_setcolor( 14 ); 
_setgtextvector{ 1, 0 ) ,- 
_outgtext("Run Complete...BLUE attains goal"); 
battle.default_speed = 2; 
goto wait; 

} 
else{ 

_setviewport(260,575,680,590); 
_clearscreen{ „GVIEWPORT ); 
_setviewport(1,1,799,599); 
_moveto( 270, 575 ); 
_setcolor{ 14 ); 
„setgtextvector { 1, 0 ),- 
_outgtext{"Run Complete — BLUE attains goal"); 
battle.default_speed = 2; 
goto wait; 

) 
buffer = _getch{); 
if {buffer == 'r') { 

// set default trace to no trace 
itrace = 0; 

// initialize squad number to display on screen 
red.display_red_squad = 1; 
blue.display_blue_squad = 1; 
battle.sguad_color_flag = 0; 

// Re-seed random number generator 
idum=-31415926; 
zran=ranl{&idum); 

// reset command structure coloring flags 
red_command.red_subordinate_color_flag = 0; 
blue_command.blue_subordinate„color„flag = 0; 

// initialize for re-run 
goto changeoption; 

} 
else{ 

_clearscreen{ „GCLEARSCREEN ); 
goto startagain; 

} 

) 
//** ********* ****** **.******.*«» 
// 
// Playback previously recorded run 
// //**********.*.*.*** *.***„*********.**.*.********. 

playback: 
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_unregisterfonts{); 
_registerf onts ( "oemlO.FON" ); 
strcatl strcatl strcpyl list, "t" ), "oeinlO"), "'"); 
strcatl list, "h30w24bv" ); 
_getfontinfo( &fi ) ,- 
_setfont( list ); 
_settextposition( 13, 35); 
printft"Plot-data file name ? "); 
scanf("%s", Splotfilename); 

playback_option: 

if ( !_setvideomode( _SRES16COLOR ) ){ 
_setvideomode I _VRES16COLOR ); 

- _clearscreen( _GCLEARSCREEN ) ; 
> 

playagain: 

playterm = PLAYBACKIplotfilename, fcidata, filename, fcbattle.ichoice); 

if (playterm == 2){ // then read-in new input data 
goto read_data; 

} 

if {playterm == 3){  // then play-back new file 
goto playback_option; 

} 

„getvideoconfig( tvc ); 

if (vc.numxpixels < 641) { // then use VGA value 
_setviewport(200,455,525,465); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,1,639,479); 
jtiovetol 205, 455 ) ; 
_setcolor ( 14 ) ; 
_setgtextvector ( 1, 0 ); 
if (playterm == 1)( 

_outgtext("       Run Terminated") ; 
) 
else{ 

if (playterm == 0) { 
_outgtext("        Run Complete"); 

) 
) 

> 
else{ 

_setviewport(260,575,680,590) ; 
_clearscreen ( _GVIEWPORT ) ; 
_setviewport(1,1,799,599); 
_moveto( 270, 575 ); 
_setcolor( 14 ); 
_setgtextvector( 1, 0 ); 
if (playterm == 1){ 

_outgtext("       Run Terminated") ; 
) 
else{ 

if (playterm == 0) { 
_outgtext("        Run Complete"); 

) 
) 

) 
opwait: 

buffer = _getch(); 
if (buffer == 'r') ( 

goto playagain; 
} 
else( 

if( buffer=='d' || buffer=='p' || buffer=='q') { 
goto options; 

) 
else( 

goto opwait; 
) 

) 
} 

//  
// 
// Allocate Memory for Structures 
// //.........  
struct red_GC_parameters *get_r_GC(void) 
( 

struct red_GC_parameters *p ; 

if ( (P = _fmalloc( sizeof(struct red_GC_parameters) )) == NULL) { 
_clearscreen( _GCLEARSCREEN ); 
printft "Insufficient Memory to Run"); 
exit(O); 

) 
return p; 
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struct blue_GC_parameters *get_b_GC {void) 
( 

struct blue_GC_parameters *p ; 

if ( (p = _fmalloc{ sizeof (struct blue_GC_parameters) )} == NULL) { 
_clearscreen( _GCLEARSCREEN ) ; 
printfl "Insufficient Memory to Run"); 
exit(O); 

) 
return p; 

) 
struct red_command_parameters *get_r_com{void) 
{ 

struct red_command_parameters *p ; 

if   (   (p = _fmalloc( sizeof(struct red_command_parameters)   ))   == NULL)   { 
_clearscreen( _GCLEARSCREEN ); 
printf(   "Insufficient Memory to Run"); 
exit(O) ; 

) 
return p; 

) 
struct blue_command_parameters *get_b_com (void) 
{ 

struct blue_command_parameters *p ; 

if ( (P = _fmalloc( sizeof(struct blue_command_parameters) )) == NULL) { 
_clearscreen ( _GCLEARSCREEN ); 
printfl "Insufficient Memory to Run"); 
exit(O); 

} 
return p; 

> 
struct battle_parameters *get_bat(void) 
{ 

struct battle_parameters *p ; 

if ( (p = _fmalloc( sizeof (struct battle_parameters) )) == NULL) { 
_clearscreen ( _GCLEÄRSCREEN ) ; 
printf( "Insufficient Memory to Run"); 
exit(O); 

) 
return p; 

> 
struct red_parameters *get_red (void) 
{ 

struct red_parameters *p; 

if ( (p = _fmalloc( sizeof (struct red_parameters) )) == NULL) { 
_clearscreen ( _GCLEARSCREEN ) ; 
printft "Insufficient Memory to Run"); 
exit(O); 

} 
return p; 

) 
struct blue__parameters *get_blue(void) 
( 

struct blue_parameters *p; 

if ( (P = _fmalloc( sizeof (struct blue_parameters) )) == NULL) { 
_clearscreen( _GCLEÄRSCREEN ); 
printft "Insufficient Memory to Run"); 
exit(O); 

} 
return p; 

) 
struct statistics *get_stats(void) 
{ 

struct statistics *p; 

if ( (P = _fmalloc( sizeof(struct statistics) )) == NULL) ( 
_clearscreen ( _GCLEARSCREEN ) ; 
printft "Insufficient Memory to Run"); 
exit(O); 

) 
return p; 
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Function Modules 

A short description of each function module that appears in ISAAC'S 
main function (see Main Module above) is given in table 12. 

Table 12. ISAAC functions 
Function File Description 

ABS_FLOAT ISAACP.C returns absolute value of a float 

ADAPT_BLUE_GC_WEIGHTS ISAAC_C.C adapts blue global commander weights 

ADAPT_BLUE_ISAACA_WEIGHT ISAAC_C.C adapts blue ISAACA weights 

ADAPT_BLUE_LC_WEIGHTS ISAAC_C.C adapts blue local commander weights 

ADAPT_RED_GC_WEIGHTS ISAAC_.CC adapts red global commander weights 

ADAPT_RED_ISAACA_WEIGHTS ISAAC_C.C adapts red ISAACA weights 

ADAPT_RED_LC_WEIGHTS ISAAC_C.C adapts red local commander weights 

BLUE_COMMAND_SENSOR ISAAC_D.C determines what the ith blue local 
commander sees 

BLUE_COMM_INFO ISAAC_H1.C determines what ISAACAs are within 
blue's COMM range 

BLUE_GLOBAL_COMMAND ISAAC_S2.C blue global commanders set 'direction' 
goals for LCs 

BLUEINRED ISAAC_D.C determines number of blues within red 
sensor 

BLUE_LOCAL_COMMAND_l ISAACJ.C blue local commanders set local goals for 
3-by-3 patch 

BLUE_LOCAL_COMMAND_2 ISAAC_K2.C blue local commanders set local goals for 
5-by-5 patch 

BLUE_PROMOTIONS ISAAC_H2.C adjudicate blue local commander 
promotions 

BLUE_SENSOR ISAACJD.C determines what the ith blue ISAACA 
sees within sensor 

BLUE_SWATH_AREA ISAAC_G\C calculates the area of each of 16 'swaths' 
centered at the current (x,y) coordinates 
of blue local commander 

BLUE_SWATH_DENSITY ISAAC_R2.C calculates the density of red ISAACAs in 
each of 16 swaths centered at the current 
(x,y) coordinates of blue local 
commander 

CENTER_MASS ISAAC_T5.C returns the center-of-mass of red, blue 
and total forces 

CLUSTER.l ISAAC_T3.C returns the distribution of clusters (D=l) 
and average size 

CLUSTER_2 ISAAC_T4.C returns the distribution of clusters (D=2) 
and average size 
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COMBAT ISAACJLC adjudicates combat (assuming ALL 
enagements) 

COMBAT.2 ISAACJ.C adjudicates combat (assuming 
enagement threshold set) 

COMPUTEBLUEPENALTY ISAAC_E1.C calculates penalty for each blue move 
possibility 

COMPUTEBLUEPENALTY_COMM ISAAC.F.C calculate blue-move penalty assuming 
COMM is 'on' 

COMPUTEBLUEPENALTY_GC ISAAC_E3.C calculates penalty for blue assuming GC 
flagon 

COMPUTEREDPENALTY ISAAC_E1.C calculates penalty for each red move 
possibility 

COMPUTEREDPENALTY_COMM ISAAC_F.C calculate red-move penalty assuming 
COMM is 'on' 

COMPUTEREDPENALTY_GC ISAAC_E2.C calculates penalty for red assuming GC 
flagon 

GETRANDOM ISAAC_P.C get a random number between a and b 

GOAL_STATS ISAAC_T5.C returns the number of ISAACAs near 
enemy flag 

INITIALIZE_nELD ISAAC_B1.C initialize battlefield parameters 

INPUT_FTLE_DATA ISAAC_M1.C read input from data file 

INPUT_SCREEN_DATA ISAAC_M2.C input data from screen prompts 

INTERPOINT_DIST ISAAC_T1.C calculates R-R, B-B, R-B and R,B-goal 
distance dists 

MOMENT ISAAC_T3.C returns mean ave, ave deviation and 
standard deviation 

MOVEBLUE ISAAC_G.C moves all blue ISAACAs (updates lattice 
positions) 

MOVERED ISAAC_G.C moves all red ISAACAs (updates lattice 
positions) 

NEIGHBORS ISAAC_T5.C returns the average number of ISAACAs 
at distance D 

NOMEM ISAAC_P.C returns 'insufficient memory to run' 
message and exits 

PLAYBACK ISAAC_O.C "plays-back" previously recorded *.out 
files 

PROMPT_SCREEN ISAAC_N.C display choices for 'on-the-fly' parameter 
changes 

RANI ISAAC_P.C uniform random generator from 
'Numerical Recipes' (Cambridge 
University Press) 

RED_COMMAND_SENSOR ISAAC_D.C determines what the ith red local 
commander sees 

RED_COMM_INFO ISAAC_H1.C determines what ISAACAs are within 
red's COMM range 
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RED_GLOBAL_COMMAND ISAAC_S1.C red global commanders set 'direction' 
goals for LCs 

REDINBLUE ISAAC_D.C determines number of reds within blue 
sensor 

RED_LOCAL_COMMAND_l ISAAC_J.C red local commanders set local goals for 
3-by-3 patch 

RED_LOCAL_COMMAND_2 ISAAC_K1.C red local commanders set local goals for 
5-by-5 patch 

RED_PROMOTIONS ISAAC_H2.C adjudicate red local commander 
promotions 

RED_SENSOR ISAACD.C determines what the ith red ISAACA sees 
within sensor 

RED_SWATH_AREA ISAAC.Q.C calculates the area of each of 16 'swaths' 
centered at the current (x,y) coordinates 
of red local commander 

RED_SWATH_DENSITY ISAAC_R1.C calculates the density of blue ISAACAs in 
each of 16 swaths centered at the current 
(x,y) coordinates of red local 
commander 

SCREENDATA ISAAC_B2.C dump data to graphics screen 

SIGNUM ISAAC_P.C sign (+1,-1, or 0) of a float 

SPATIAL_ENTROPY ISAAC_T2.C computes spatial entropy for 4x4, 8x8 
and 16x16 blocks 

UPDATEPICTURE ISAAC_L.C update graphics screen ith new red and 
blue positions 

WRITE_1_CLUSTER ISAAC_M4.C Write cluster distributions (calculated 
using D=l) to files (stats_10.dat, 
stats_ll.dat) 

WRITE_2_CLUSTER ISAAC_M4.C Write cluster distributions (calculated 
using D=l) to files (stats_12.dat, 
stats_13.dat) 

WRITE_DATA_FILE ISAAC_M3.C Write current parameter values to data 
file 

WRITEJNTERPOINT ISAAC_M4.C Write interpoint distance distributions to 
file (stats_2.dat,... stats_8.dat) 

WRITE_OUT_nLE ISAAC_M3.C Open and write to 'play-back' (*.out) file 

WRITE_RR_NEIGHBORS ISAAC_M4.C Write red-in-red distributions to file 
(stats_14.dat) 

WRITE_BB_NEIGHBORS ISAAC_M4.C Write blue-in-blue distributions to file 
(stats_15.dat) 

WRITE_RB_NEIGHBORS ISAAC_M4.C Write red-in-blue distributions to file 
(stats_16.dat) 

WRITE_BR_NEIGHBORS ISAAC_M4.C Write blue-in-red distributions to file 
(stats_17.dat) 
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WRITE_AR_NEIGHBORS 

WRITE_AB_NEIGHBORS 

ISAAC M4.C 

ISAAC M4.C 

Write    all-in-red   distributions    to    file 
(stats_18.dat) 

Write   all-in-blue   distributions   to   file 
(stats_19.dat) 
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Appendix D: Source Code for ISAAC_GA 
Below is the ANSI C source code for version 1.5.1of ISAAC_GA (i.e., 
the stand-alone Genetic Algorithm evolver; see Table 4). Screen and 
graphics functions are those defined in graph.h of Microsoft's Visual 
C/C++ compiler for DOS (vl.52). Note that ISAAC.GA uses a slightly 
older version of ISAAC'S core engine than the one listed in appendix C. 
Specifically, the version of ISAAC that is embedded within ISAAC_GA 
allows only one squad per side and excludes all command and control 
structures. All auxiliary functions are the same as those listed in Table 12. 

Header File 

#define ISAACVERSION "ISAAC-GA / Version 1.5.1" 
#define MAXFIELDSIZE101 
#define MAXSENSORRANGE 10 
#define MAXINTERPOINTDIST (int) (1.414214 * MAXFIELDSIZE) 
#define MAXISAACNUM126 
#define MAXNEIGHBORNUM 2*MAXISAACNUM+1 
#define TERRAINMAXNUM 25 
«define MAXCLUSTERSIZE 2*MAXISAACNUM+1 
#define POPSIZE 40 // maximum population size 
fdefine INIT_COND_MAX 50 // number of ICs to average over in GA calculation 

Structures 

//* 
// 
// 
// 
// 
// 
// 
//AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

struct mission_objective // define a member template of the population 

- mission_objective 
- battle_parameters 
- red_parameters 
- blue_parameters 

: mission objective measures 
: battlefield/combat parameters 
: red ISAACA force parameters 
: blue ISAACA force parameters 

AAAAAAAAAAAAAAAAAAAAAAA 

double alpha_l; 
double alpha_2; 
double alpha_3; 
double alpha_4; 
double alpha_5; 
double alpha_6; 
double alpha_7; 
double alpha_8; 
double alpha_9; 
double alpha_10; 
double time_to_goal[INIT_COND_MAX+l]; 
double total_friendly_loss[INIT_COND_MAX+l]; 
double total_enemy_loss[INiT_COND_MAX+13; 
double survival_ratio[INIT_COND_MAX+l]; 
double red_CM_to_BF_distpNIT_COND_MAX+l]; 
double blue_CM_to_RF_distpNIT_COND_MAX+l]; 

// weight for "time to goal" measure 
// weight for "total friendly loss" measure 
// weight for "total enemy loss" measure 
// weight for "ratio between surviving red and blue ISAAC As" measure 
// weight for "distance between red CM and blue flag" measure 
// weight for "distance between blue CM and red flag" measure 
// weight for "number of blue near red flag" measure 
// weight for "number of red near blue flag" measure 
// weight for "number of red fratricide hits" measure 
// weight for "number of blue fratricide hits" measure 
// time that first friendly ISAAC arrives at enemy flag 
// total number of friendly IS A AC As killed or injured 
// total number of enemy ISAAC As killed or injured 
// ratio between surviving RED and BLUE ISAACAs (R/(R0*B)) 
// distance between red CM and blue flag 
// distance between blue CM and red flag 
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double red_near_BF[INIT_COND_MAX+l3; 
double blue_near_RF[INIT_COND_MAX+l]; 
double red_fraWddepNTr_COND_MAX+l]; 
double blue_fratricide[INIT_COND_MAX+l]; 
double near_range; 
double near_range_num; 
double r_CM_f; 
}; 

struct battle_parameters 

// number of red IS A AC As near blue flag 
// number of blue ISAAC As near red flag 
// number of red fratricide hits 
// number of blue fratricide hits 
//the radius that defines "near" for red_near_BF and blue_near_RF 
// number of friendly IS A AC As that must be within near_range of BF 
// fractional distance threshold such that if r_CM/max < r_CM_f then stop 

short goalcolor; 
short boxcolor; 
int default_speed; 
int ioutdata; 
int ichoice; 
int isize; 
int initdist; 
int ibattlebox_red_length; 
int ibattlebox_red_width; 
int ibattlebox_red_cen_x; 
int ibattlebox_red_cen_y; 
int ibattlebox_Mue_length; 
int ibattlebox_blue_width; 
int ibattlebox_blue_cen_x; 
int ibattlebox_bme_cen_y; 
int itermcond; 
int imove_selection; 
int max_combat_flag; 
int terrainjflag; 
int terrain_num; 
int terrain_size[TERRAINMAXNUM]; 

//=1 if run is FAST, =2 if run is SLOW 
// output l=screen only; 2=file only; 3=both 
// run flag: l=run engine; 2=playback file 
// user specified battlefield size 
// initial force distribution flag 
// length of box containing initial distribution 
// width of box containing initial distribution 
// x-coodinate of the center of red's initial box 
// y-coodinate of the center of red's initial box 
// length of box containing initial distribution 
// width of box containing initial distribution 
// x-coodinate of the center of blue's initial box 
// y-coodinate of the center of blue's initial box 
// termination condition flag (l=goal; 2=none) 
// 1 = FIXED order; 2 = random order 
// 1=# of sim engmnts lmtd; 0=no limit 
// 1 = terrain to be used; 1 = no 
// number of terrain block 
// radius of ith terrain block 

int terrain_center_x[TERRAINMAXNUM]; // x-coordinate of the the ith block's center 
int terrain_center_y[TERRAINMAXNUM]; // y-coordinate of the the ith block's center 
int ioccupation[MAXFIELDSIZE][MAXFIELDSIZE]; // =2 if terrain, 1 if occupied, else 0 
int reconstitution_flag; // if 0 then no reconstitution, else reconstitution on 
int red_fratricide_flag; // =1 if red ISAACAs can accidentally kill red ISAACAs, else 0 
int blue_fratricide_flag; // =1 if blue ISAACAs can accidentally kill blue ISAACAs, else 0 
int red_frat_rad; // radius surrounding targeted blue within which reds can be killed 
int blue_frat_rad; // radius surrounding targeted red within which blues can be killed 
int red_frat_count; // cummulative total of red fratricide 'hits' 
int blue_frat_count; / / cummulative total of blue fratricide 'hits' 
float red_frat_prob; / / probability that red is accidentally shot by red 
float blue_frat_prob; // probability that blue is accidentally shot by blue 
}; 

struct red_parameters 
{ 
short redcolor; 
int redgoalx; 
int redgoaly; 
int redx[MAXISAACNUM]; 
int redy[MAXISAACNUM]; 
int rseer[MAXISAACNUM]; 
int rseeb[MAXISAACNUM]; 
int rseercomm[MAXISAACNUM]; 
int rseebcomm[MAXISAACNUM]; 
int rstatus[MAXISAACNUM]; 
int ibinr[MAXISAACNUM]; 
float wlred[MAXISAACNUM]; 
float w2red[MAXISAACNUM]; 
float w3red[MAXISAACNUM]; 
float w4red[MAXISAACNUM]; 
float w5red[MAXISAACNUM]; 
float w6red[MAXISAACNUM]; 

// x coordinate of red goal 
// y coordinate of red goal 
// x-coordinate of ith red ISAAC 
// y-coordinate of ith red ISAAC 
// =1 if red sees red and =0 otherwise 
// =1 if red sees blue and =0 otherwise 
// =1 if red sees red via COMM link 
// =1 if red sees blue via COMM link 
// =1 if alive, 1 if injured, 0 if dead 
// number of blue isaacs in red isaac range 
// active weight for red —> alive red 
// active weight for red —> alive blue 
// active weight for red —> injured red 
// active weight for red —> injured blue 
// active weight for red -> red goal 
// active weight for red —> blue goal 
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int irednum; 
int irsrange; 
int iredfrange; 
float zshotbluebyreddef; 
int iperred; 
float wlrdeff_a; 
float w2rdeff_a; 
float w3rdeff_a; 
float w4rdeff_a; 
float w5rdeff_a; 
float w6rdeff_a; 
float wlrdeffj; 
float w2rdeff_i; 
float w3rdeff_i; 
float w4rdeff_i; 
float w5rdeff_i; 
float w6rdeff_i; 
float red_w_a_max[MAXISAACNUM]; 
float red_w_i_max[MAXISAACNUM]; 
float wlreddef_a[MAXISAACNUM]; 
float w2reddef_a[MAXISAACNUM]; 
float w3reddef_a[MAXISAACNUM]; 
float w4reddef_a[MAXISAACNUM]; 
float w5reddef_a[MAXISAACNUM]; 
float w6reddef_a[MAXISAACNUM]; 
float wlreddef_i[MAXISAACNUM]; 
float w2reddef_i[MAXISAACNUM]; 
float w3reddef_i[MAXISAACNUM]; 
float w4reddef_i[MAXISAACNUM]; 
float w5reddef_i[MAXISAACNUM]; 
float w6reddef_i[MAXISAACNUM]; 
int iredmovecont; 
int iradv_a[MAXISAACNUM]; 
int iradv_i[MAXISAACNUM]; 
int iradvrange[MAXISAACNUM]; 
int irclus_a[MAXISAACNUM]; 
int irdus_i[MAXISAACNUM]; 
int ircom_a[MAXISAACNUM]; 
int ircom_i[MAXISAACNUM]; 
int iradvrange_min; 
int iradvrange_max; 
int iradv_a_min; 
int iradv_a_max; 
int iradv_i_min; 
int iradv_i_max; 
int irclus_a_min; 
int irclus_a_max; 
int irclus_i_min; 
int irclus_i_max; 
int ircom_a_min; 
int ircom_a_max; 
int ircom_i_min; 
int ircom_i_max; 
float zrfromnnindist_a; 
float zrfromrgmindist_a; 
float zbfromrmindist_a; 
float zrfromrmindist_i; 
float zrfromrgmindistj; 
float zbfromrnündist_i; 
int iredmoverange; 
int red_max_eng_num; 
int red_COMM_flag; 
int ircommrange; 
float rcommweight; 
float rcommweight_def; 

// total number of red ISAACs 
// red sensor range 
// red fire range 
// probability that a red ISAAC shoots a blue 
// input flag for initial personality type 
// default weight for alive red —> alive red 
// default weight for alive red —> alive blue 
// default weight for alive red -> injured red 
// default weight for alive red -> injured blue 
// default weight for alive red -> red goal 
// default weight for alive red —> blue goal 
// default weight for injured red —> alive red 
// default weight for injured red —> alive blue 
// default weight for injured red —> injured red 
// default weight for injured red —> injured blue 
// default weight for injured red —> red goal 
// default weight for injured red —> blue goal 
// maximum absolute value of default red alive weights 
// maximum absolute value of default red injrd weights 
// default weight for alive red —> alive red 
// default weight for alive red —> alive blue 
// default weight for alive red —> injured red 
// default weight for alive red —> injured blue 
// default weight for alive red —> red goal 
// default weight for alive red —> blue goal 
// default weight for injrd red —> alive red 
// default weight for injrd red —> alive blue 
// default weight for injrd red —> injured red 
// default weight for injrd red —> injured blue 
// default weight for injrd red —> red goal 
// default weight for injrd red —> blue goal 
// red movement constraint flag 
// alive red advance threshold 
// injured red advance threshold 
// range in which red # > threshold to advance 
// alive red cluster threshold 
// injured red cluster threshold 
// alive red combat threshold 
// injured red combat threshold 
// min red advance threshold for random constraints 
// max red advance threshold for random constraints 
// min alive red advance threshold for ran constraints 
// max alive red advance threshold for ran constraints 
// min injrd red advance threshold for ran constraints 
// max injrd red advance threshold for ran constraints 
// min alive red cluster threshold for ran constraints 
// max alive red cluster threshold for ran constraints 
// min injrd red cluster threshold for ran constraints 
// max injrd red cluster threshold for ran constraints 
// min alive red combat threshold for ran constraints 
// max alive red combat threshold for ran constraints 
// min injrd red combat threshold for ran constraints 
// max injrd red combat threshold for ran constraints 
// minimum distance of alive red from red 
// minimum distance of alive red from red goal 
// minimum distance of alive blue from red 
// minimum distance of injured red from red 
// minimum distance of injured red from red goal 
// minimum distance of injured blue from red 
// max movement radius for alive reds 
// max # of simul engagements by red 
// if = 0 then COMMs NOT used for red, else yes 
// red communications range 
// red COMM weight (relative to w=l) 
// red default COMM weight 
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float zrsscale; 
int red_clock[MAXISAACNUM]; 
int red_max_r_time; 

struct blue_parameters 

// scale factor for multiplying red penalty 
// internal red clock (for reconstitution) 
// maximum number of 'ticks' before reconstitution 

short bluecolor; 
int bluegoalx; // 
int bluegoaly; // 
intbluex[MAXISAACNUM]; // 
intbluey[MAXISAACNUM]; // 
intbseer[MAXISAACNUM]; // 
intbseebfMAXISAACNUMJ; // 
intbseercomm[MAXISAACNUM]; // 
intbseebcomm[MAXISAACNUM]; // 
mtbstatusfMAXISAACNUM]; // 
intirinbfMAXISAACNUM]; // 
float wlbluefMAXISAACNUM]; // 
float w2blue[MAXISAACNUM]; // 
float w3blue[MAXISAACNUM]; // 
float w4blue[MAXISAACNUM]; // 
float w5blue[MAXISAACNUM]; // 
float w6blue[MAXISAACNUM]; // 
int ibluenum; // 
intibsrange;                                        ■ // 
int ibluefrange; // 
float zshotredbybluedef; // 
int iperblue; // 
float wlbdeff_a; // 
float w2bdeff_a; // 
float w3bdeff_a; // 
float w4bdeff_a; // 
float w5bdeff_a; // 
float w6bdeff_a; // 
float wlbdefM; // 
float w2bdeff_i; // 
float w3bdeff_i; // 
float w4bdeff_i; // 
float w5bdeff_i; // 
float w6bdeff_i; // 
float blue_w_a_max[MAXKAACNUM];// 
float blue_w_i_max[MAXISAACNUM]; // 
float wlbluedef_a[MAXISAACNUM], 
float w2bluedef_a[MAXISAACNUM]. 
float w3bluedef_a[MAXISAACNUM], 
float w4bluedef_a[MAXISAACNUM]; 
float w5bluedef_a[MAXISAACNUM]; 
float w6bluedef_a[MAXISAACNUM]; 
float wlbluedef_i[MAXISAACNUM]; 
float w2bluedef_i[MAXISAACNUM]; 
float w3bluedef_i[MAXISAACNUM]; 
float w4bluedef_i[MAXISAACNUM]; 
float w5bluedef_i[MAXISAACNUM]; 
float w6bluedef_i[MAXISAACNUM]; 
int ibluemovecont; 
int ibadv_a[MAXISAACNUM]; 
int ibadv_i[MAXISAACNUM]; 
int ibadvrange[MAXISAACNUM]; 
int ibclus_a[MAXISAACNUM]; 
int ibdusJ[MAXISAACNUM]; 
int ibcom_a[MAXISAACNUM]; 
int ibcom_i[MAXISAACNUM]; 
int ibadvrange_min; 
int ibadvrange_max; 

x coordinate of blue goal 
y coordinate of blue goal 
x-coordinate of ith blue ISAAC 
y-coordinate of ith blue ISAAC 
=1 if blue sees red and =0 otherwise 
=1 if blue sees blue and =0 otherwise 
=1 if blue sees red via COMM link 
=1 if blue sees blue via COMM link 
=1 if alive, 1 if injured, 0 if dead 
number of red isaacs in blue isaac range 
active weight for blue -> alive blue 
active weight for blue -> alive red 
active weight for blue —> injured blue 
active weight for blue —> injured red 
active weight for blue —> blue goal 
active weight for blue —> red goal 
total number of blue ISAACs 
blue sensor range 
blue fire range 
probability that a blue ISAAC shoots a red 
input flag for initial personality type 
default weight for alive blue —> alive blue 
default weight for alive blue —> alive red 
default weight for alive blue —> injured blue 
default weight for alive blue —> injured red 
default weight for alive blue —> blue goal 
default weight for alive blue —> red goal 
default weight for injured blue —> alive blue 
default weight for injured blue —> alive red 
default weight for injured blue —> injured blue 
default weight for injured blue —> injured red 
default weight for injured blue —> blue goal 
def weight vector for injured blue —> red goal 
max absolute value of default blue alive weights 
max absolute value of default blue injurd weights 

// default weight for alive blue —> alive blue 
// default weight for alive blue —> alive red 
// default weight for alive blue —> injured blue 
// default weight for alive blue —> injured red 
// default weight for alive blue —> blue goal 
// default weight for alive blue —> red goal 
// default weight for injrd blue —> alive blue 
// default weight for injrd blue —> alive red 
// default weight for injrd blue —> injured blue 
// default weight for injrd blue —> injured red 
// default weight for injrd blue —> blue goal 
// default weight for injrd blue —> red goal 
// blue movement constraint flag 
// alive blue advance threshold 
// injured blue advance threshold 
// range within which blue # > threshold to advance 
// alive blue cluster threshold 
// injured blue cluster threshold 
// alive blue combat threshold 
// injured blue combat threshold 
// min blue advance threshold for random constraints 
// max blue advance threshold for random constraints 
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int ibadv_a_min; 
int ibadv_a_max; 
int ibadvJLmin; 
int ibadv_i_max; 
int ibclus_a_min; 
int ibclus_a_max; 
int ibclus_i_min; 
int ibclus_i_max; 
int ibcom_a_min; 
int ibcom_a_max; 
int ibcom_i_min; 
int ibcom_i_max; 
float zbfrombmindist_a; 
float zbfrombgmindist_a; 
float zrfrombmindist_a; 
float zbfrombmindist_i; 
float zbfrombgmindist_i; 
float zrfrombmindist_i; 
int ibluemoverange; 
int blue_max_eng_num; 
int blue_COMM_flag; 
int ibcommrange; 
float bcommweight; 
float bcommweight_def; 
float zbsscale; 
int blue_clock[MAXISAACNUM]; 
int blue_max_r_time; 

// min alive blue advance threshold for ran constrnts 
// max alive blue advance threshold for ran constrnts 
// min injrd blue advance threshold for ran constrnts 
// max injrd blue advance threshold for ran constrnts 
// min alive blue cluster threshold for ran constrnts 
// max alive blue cluster threshold for ran constrnts 
// min injrd blue cluster threshold for ran constrnts 
// max injrd blue cluster threshold for ran constrnts 
// min alive blue combat threshold for ran constrnts 
// max alive blue combat threshold for ran constrnts 
// min injrd blue combat threshold for ran constrnts 
// max injrd blue combat threshold for ran constrnts 
// minimum distance of alive blue from blue 
// minimum distance of alive blue from blue goal 
// minimum distance of alive red from blue 
/ / minimum distance of injured blue from blue 
// minimum distance of injured blue from blue goal 
// minimum distance of injured red from blue 
// max movement radius for alive blues 
// max # of simul engagements by blue 
// if = 0 then COMMs NOT used for blue, else yes 
// blue communications range 
// blue COMM weight (relative to w=l) 
// blue default COMM weight 
// scale factor for multiplying blue penalty 
// internal blue clock (for reconstitution) 
// maximum number of 'ticks' before reconstitution 
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Main Module 

// 
// ISAAC_GA.C - Simple Genetic Algorithm 'Evolver' for ISAAC 
// 
// Adapted from Z. Miohalewicz, GA + Data Structures = EP, Springer-Verlag, 2nd Edition 
// 
//MS Visual C++ vl.52 
// Version 1.5.1 
// 
// Andy Ilachinski 
// Center for Naval Analyses 
// 4401 Ford Avenue 
// Alexandria, VA 22302 
// (703) 824-2045 
// ilachina6cna.org 
// 
//*****************************•********************************************************************* 

»include <ga.h> // contains MISSION_OBJECTIVE, BATTLE, RED and BLUE parameter structures 
»include <string.h> 
»include <float.h> 
»include <math.h> 
»include <stdlib.h> 
»include <stdio.h> 
»include <conio.h> 
»include <time.h> 
»include <graph.h> 
»include <io.h> 
»include <malloc.h> 
»include <time.h> 
»include <process.h> 

»define CHROM_LENGTH_MAX 45     // number of genes in chromosome defining an ISAACA personality 
»define PXOVER 0.8 // probability of crossover 
»define PMUTATION 0.1 // probability of mutation 

struct genotype // define a member template of the population 
{ 
double gene[CHRONLLENGTH_MAX+l]; //a string of variables 
double fitness; // genotype's fitness 
double upper[CHROM_LENGTH_MAX+l],-// genotype's variables upper bound 
double lower [CHROM_LENGTH_MAX+l];// genotype's variables lower bound 
double rel_fitness; // relative fitness 
double cum_fitness; // cumulative fitness 

}; 

//•♦A***************************************************** 

// 
// Allocate Memory for Structures 
// 
//********************•******************************************************************************** 

struct battle_parameters battle; 
struct red_parameters red; 
struct blue_parameters blue; 
struct genotype population[POPSIZE+1];   // population 
struct genotype newpopulation[POPSIZE+l]; // new population to replace the old generation 
struct mission_objective mission;       // mission objective fitness measure parameters 
struct red_parameters red; 

// 
// 
// FUNCTION PROTOTYPES 
// 
// 

void INPUT_FILE_DATA(unsigned char filename[30], struct battle_parameters *batp, 
struct red_parameters *redp, struct blue_parameters *bluep, long *idum); 
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void WRITE_DATA_FILE(FILE "datafile, struct battle_parameters "batp, 
struct red_parameters *redp, struct blue_parameters *bluep); 

void WRITE_FITNESS(FILE *ga_stat, struct mission_objective *m, int termination_code, 
int max_time_to_goal); 

void PROMPTS (void) ; 

void WRITE_CHROM_TO_FILE(int g, FILE *ga_stat, int initial_condition_genes_flag); 

void SHOW_FITNESS(struct mission_objective *m, int termination_code, int max_time_to_goal); 

void SHOW_GRAPHICS(struct battle_parameters *batp,  struct red_parameters "redp, 
struct blue_parameters *bluep, struct mission_objective *m, int termination_code, 
int max_time_to_goal); 

void SH0W_CHROMOS0ME(int mem, int initial_condition_genes_flag); 

void INITIALIZE_FIELD(struct battle_parameters *batp, struct red_parameters *redp, 
struct blue_parameters "bluep, int iflag[5][5], long *idum); 

void ADAPT_RED_ISAACA_WEIGHTS (int i, int irinrnum, int ibinrnum, int iradvnum, 
struct red_parameters *redp); 

void ADAPT_BLUE_ISAACA_WEIGHTS (int i, int ibinbnum, int irinbnum, int ibadvnum, 
struct blue_parameters *bluep); 

void ADAPTBLUEWEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum, 
struct blue_parameters "bluep); 

void RED_COMM_INFO(int i, struct red_parameters *redp, struct blue_parameters "bluep); 

void BLUE_COMH_INFO(int i, struct red_parameters *redp, struct blue_parameters "bluep); 

void MOVERED (int i, int imrr, int imove, struct battle_parameters *batp, 
struct red_parameters *redp); 

void MOVEBLÜE (int i, int imbr, int imove, struct battle_parameters *batp, 
struct blue_parameters *bluep); 

void RED_SENSOR(int *irinrnum, int "ibinrnum, int "iradvnum, int "ibinrinjnum, 
int *irinrinjnum, int i, struct red_parameters "redp, struct blue_parameters *bluep, 
int **ilblbinr); 

int BLÜEINREDt int i, struct red_parameters *redp, struct blue_parameters *bluep, 
int **ilblbinr ); 

void BLUE_SENSOR(int "ibinbnum, int "irinbnum, int "ibadvnum, int "irinbinjnum, 
int "ibinbinjnum, int i, struct red_parameters "redp, 
struct blue_parameters "bluep, int ""ilblrinb) ,- 

int REDINBLUEf int i, struct red_parameters "redp, struct blue_parameters "bluep, 
int ""ilblrinb); 

float COMPUTEREDPENALTY(int i, int imrr, int "igoalflag, int irinrinjnum, int ibinrinjnum, 
float zmin, int iflag[5][5], float z[5][5], struct battle_parameters "batp, 
struct red_parameters "redp, struct blue_parameters "bluep); 

float COMPUTEREDPENALTY_COMM(int i, int imrr, int "igoalflag, int irinrinjnum, 
int ibinrinjnum, float zmin, int iflag(5][5], float z[5][5), 
struct battle_parameters "batp, struct red_parameters "redp, 
struct blue_parameters "bluep); 

float COMPOTEBLUEPENALTY(int i, int imbr, int "igoalflag, int irinbinjnum, int ibinbinjnum, 
float zmin, int iflag[5][5], float z[5]t5], struct battle_parameters "batp, 
struct red_parameters "redp, struct blue_parameters "bluep); 

float COMPUTEBLUEPENALTY_COMM(int i, int imbr, int "igoalflag, int irinbinjnum, 
int ibinbinjnum, float zmin, int iflag[5][5], float z[5][5], 
struct battle_parameters "batp, struct red_parameters "redp, 
struct blue_parameters "bluep); 

void COMBAT( struct battle_parameters "batp, struct red_parameters "redp, 
struct blue_parameters "bluep, long "idum, int ""ilblbinr, int ""ilblrinb); 

void C0MBAT_2( struct battle_parameters "batp, struct red_parameters "redp, 
struct blue_parameters "bluep, long "idum, int ""ilblbinr, int ""ilblrinb); 

void CENTER_MASS(int iterations, struct mission_objective *m, struct red_parameters "redp, 
struct blue_parameters "bluep, int *termination_flag, int max_CM_dist); 
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void GOAL_STATS(int iterations, struct mission_objective *m, int isize, struct red_parameters *redp, 
struct blue_parameters *bluep, int *termination_flag, int blue_in_RG_max, int red_in_BG_max); 

void SCREEN_UPDATE(int itime, int iterations, int mem, int generation, int num_generations, 
int num_initial_conds, int max_time_to_goal, double avg, double best_val, 
double worst_val, double *best_fitness_gen, double *worst_fitness_gen, 
double pf); 

void DECODE_BEST(struct red_parameters *redp, int min_dist_genes_flag, 
int initial_condition_genes_flag); 

float abs_float( float x),- 

float getrandomtint x, int y, long *idum); 

float ranldong *idum),- 

int SIGN(double x); 

void nomem(); 

void initialize (void) ,- 
double randval(double, double); 
void penalty(struct mission_objective *m, struct red_parameters *redp); 
void keep_the_best(int CHROM_LENGTH); 
void elitist(int CHROM_LENGTH); 
void select(void); 
void crossover (int CHROM_LENGTH) ,- 
void Xover(int,int,int CHROM_LENGTH); 
void swap(double *, double *); 
void mutate(int CHROM_LENGTH); 
void progress_report(int generation, FILE* ga_stat, double *best_val, double *worst_val, double *avg, 

double best_fitness_gen, double worst_fitness_gen); 

//*********************************************************************************************** 
// 
// MAIN: RUN ISAAC 
// 
//*********************** 
void main!) 
( 

******************************** **************************** 

int i, j; 
int imx, imy; 
int ired, iblue; 
int im, imc; 
int igoalflag; 
int imove; 
int ibinrnum; 
int irinbnum; 
int irinrnum; 
int ibinbnum; 
int iradvnum; 

int ibadvnum; 
int irinrinjnum; 
int ibinbinjnum; 
int irinbinjnum; 
int ibinrinjnum; 
int itime; 
int actual_time; 
int termination_flag; 
int imovecand[26]; 

int iflag[5][5]; 

// loop variables 
// loop variables 

// 
// if 
// 
// 

labels for intermediate candidte moves 
1 then red wins; if =2 then blue wins 

labels selected move (1 <= imove <= 9) 
number of blue ISAACS in red sensor range 

// number of red ISAACS in blue sensor range 
// number of red ISAACS in red sensor range 
// number of blue ISAACS in blue sensor range 
// threshold number of reds to advance 

// threshold number of blues to advance 
// number of injured red in red sensor 
// number of injured blue in blue sensor 
// number of injured red in blue sensor 
// number of injured blue in red sensor 
// time counter 

// =1 if number of red near BF > threshold is to terminate run 
// intermediate move candidates from which 
// an ISAAC will choose an actual move 
// iflag=l if a particular move represents a viable option 

int imrr; 
int imbr; 
int j j, icount; 
int bluelabel_randomized[MAXISAACNUM] 
int redlabel_randomized[MAXISAACNUM]; 
int _huge **ilblrinb; 
int _huge **ilblbinr; 
int mem; 
int iterations; 
int num_generations; 
int num_initial_conds; 
int max_time_to_goal; 
int min_time_to_goal; 
int max_CM_dist; 
time_t start_time, finish_time; 

// = red.iredmoverange if alive, else = 1 
// = blue.ibluemoverange if alive, else = 1 

// jth red's (in blue's range) label 
// jth blue's (in red's range) label 

// maximum number of GA generations 
// number of initial conditions to average over 
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int range, blue_in_RG_max, red_in_BG_max; 
int termination_code; 
int show_fitness_flag,- 
int show_graphics_flag; 
int show_chromosome_flag; 
int best_flag; 
int min_dist_genes_flag; 

// 1: stop w/1 reaches flag, 2: >N near flag, 3: CM < r_CM, 4: no stop 
// toggle to show fitness (=1) or no (=0) 
// toggle to show graphics in small window (=1) or no (=0) 
// toggle to show chromosome of current personality (=1) or no (=0) 
// =1 if best personalities are to be written to file, else =0 
// =1 if minimum distance genes (36-42) are to be used, else =0 

int initial_condition_genes_flag,-// =1 if initial condition genes (43-45) are to be used, else =0 
int CHROM_LENGTH;        // actual chromosome length to be used during run 
int min_containment_time_red; // minimum time in which RED can reach BLUE flag-containment area 
int min_containment_time_blue; // minimum time in which BLUE can reach RED flag-containment area 
int min_containment_time ; // minimum of the two possible containment times 

double elapsed_time; 
double power; 
double best_val; // 
double worst_val;        // 
double avg; // 
double best_fitness_gen,-  // 
double worst_fitness_gen; // 
double znorm; 
double zz, tl, t3, t7, tl7; 
long idum; // 

best population fitness 
best population fitness 
avg population fitness 
best fitness during current generation 
worst fitness during current generation 

random number seed (dummy 'carry-over' variable) 

float zmin; 
float zmoveprob; 
float zran; 
float z[5][5]; 
float zx, zy; 
double lowerjbound, upper_bound; 
double previous_best_fitness; 

// minimum seed used by penalty function 

// variable to catch initial ran number call 
// intermediate expected penalty function 

unsigned char buffer; 
char bb[20]; 
unsigned char datafilename[30] ,- 
unsigned char filename[30]; 
unsigned char outfilename[30]; 
unsigned char outdatafile[30]; 
unsigned char currentper[30]; 
unsigned char bestfilename[30]; 
unsigned char f ondir [_HAX_PATH] ; 
unsigned char list[20]; 
struct _fontinfo fi; 
struct _videoconfig vc; 
short xfon; 

// name of input ISAAC data file 
// name of input data file 
// name of output file 
// name of output ISAACA.dat file 
// name of output ISAACA.dat file to store current personality 
// name of output file containing best personalities 

int generation ,- 
FILE »current; 
FILE *ga_stat; 
FILE *infile; 
FILE «datafile; 
FILE *bestfile; 
FILE *outdata; 
unsigned char s[44],- 
unsigned char dbuffer 
unsigned char tbuffer 

current generation no. 
// output file 
// output file 
// input GA data file 
// input ISAAC data file 
// output best personalities 
// output best personalities 

// 

[91; 
[9]; 

******* ********** 

Allocate Memory for Matrices 

//******************** 
// 
// 
// //********************************************** 

ilblrinb = (int**) _fmalloc( (MAXISAACNUM+1) 
if ( !ilblrinb ) nomemO ; 
for ( i = 0; i < (MAXISAACNUM+1); i++ ) 
{ 

ilblrinbti] = (int*) _fmalloc( (M&XNEIGHBORNUM+l) 
if ( !ilblrinb[i] ) nomemO; 

} 

************** 

************************ 
sizeof(int') ); 

sizeof(int) ); 

********** 

ilblbinr = (int**) _fmalloc( (MAXISAACNUM+1) * sizeof(int*) ); 
if ( !ilblbinr ) nomemO; 
for ( i = 0; i < (MAXISAACNUM+1); i++ ) 
{ 

ilblbinr[i] = (int*) _fmalloc( (MAXNEIGHBORNUM+1) * sizeof(int) ); 
if ( !ilblbinr[i] ) nomemO; 

} 

//* 
// 
// 

*************** ft******** ********* t******* 

Register and Set Fonts 
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// 
if( _registerfonts( "sserife.FON" ) <= 0 ) 
{ 

_outtext( "Enter full path where .FON files are located: " ); 
gets( fondir ); 
strcat( fondir, "\\*.FON" ); 
if( registerfonts( fondir ) <= 0 ) 
{ 

_outtext( "Error: can't register fonts" ); 
exit( 1 ); 

} 
} 

// 
// Set Video Mode 
// 

if ( !_setvideomode( _SRES16C0L0R ) ){ 
_setvideomode( _VRES16C0L0R ),- 
_clearscreen( _GCLEARSCREEN ); 

} 
_clearscreen( _GCLEARSCREEN ); 

//**********************•********************************************************** 

// 
// Opening Screen 
// 

_setbkcolor ( _BLUE ) ,- 
_clearscreen ( _GCLEARSCREEN ) ; 
_getvideoconfig( &vc ); 
_setcolor( 15 ) ; 
_moveto( 75, 80 ),- 
_rectangle_w( _GFILLINTERIOR, 100, 85, 700, 90 ) ; 
_moveto( 565, 295 ); ■ 
_rectangle_w( _GFILLINTERIOR, 100, 297, 700, 302 ); 
strcatl strcatl strcpy( list, "f" ), "sserife"), "'"); 
strcatl list, "h30w24b" ); 
_getfontinfo( &f i ); 
_setfont( list ); 
_setcolor( 15 ); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "ISAAC" ) / 2); 
jnoveto( xfon, 105 ); 
_outgtext ("I S A A C"); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Irreducible Semi-Autonomous" ) / 2); 
_moveto( xfon, 143 ); 
_outgtext ("Irreducible Semi-Autonomous"); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Adaptive Combat" ) 12); 
_moveto( xfon, 173 ); 
_outgtext ("Adaptive Combat"); 
_unregisterfonts(); 
_registerfonts( "oemlO.FON" ); 
strcatl strcatl strcpyl list, "f" ), "oemlO"), "'"); 
strcatl list, "h30w24bv" ) ; 
_setfontI list ); 
_getfontinfo( &fi ); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "(Genetic Algorithm 'Evolver')" ) / 2); 
_moveto( xfon, 227 ) ,- 
_outgtext ("(Genetic Algorithm 'Evolver')"); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Version 1.5.1" ) / 2); 
_moveto( xfon, 257 ); 
_outgtext ("Version 1.5.1"); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "7 April 1997" ) 12); 
_moveto( xfon, 272 ); 
_outgtext ("7 April 1997"); 
_setcolor( 7 ); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Andy Ilachinski" ) 12); 
_moveto( xfon, 350 ); 
_outgtext ("Andy Ilachinski"); 

xfon = (vc.numxpixels 12)-   (_getgtextextent( "Center for Naval Analyses" ) 12); 
_moveto( xfon, 365 );. 
_outgtext ("Center for Naval Analyses"); 

xfon = (vc.numxpixels 12)-   (_getgtextextent( "4401 Ford Avenue" ) 12); 
_moveto( xfon, 380 ); 
_outgtext ("4401 Ford Avenue"); 
~  xfon = (vc.numxpixels 12)-   (_getgtextextent( "Alexandria, VA 22302" ) 12); 
_moveto( xfon, 395 ); 
_outgtext ("Alexandria, VA 22302"); 

xfon = (vc.numxpixels 12)-   (_getgtextextent( "ilachina6cna.org" ) 12); 
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_moveto( xfon, 410); 
_outgtext ("ilachina@cna.org"); 

xfon = (vc.numxpixels / 2) 
_moveto( xfon, 550 ) ; 
_outgtext ("Press <ENTER> to continue 

_getch () ; 

_clearscreen ( _GCLEARSCREEN ); 

(_getgtextextent( "Press <ENTER> to continue  " ) / 2); 

."); 

// prompt for file names 
_unregisterfonts (); 
_registerfonts( "sserife.FON" ) 
strcat( strcat( strcpyl list, " 
strcat( list, "h30w24bv" ); 
_getfontinfo( &fi ); 
_setfont ( list ) ,- 
xfon = (vc.numxpixels / 2) 
_moveto( xfon, 80 ) ; 
_setcolor ( 15 ) ,- 
_outgtext ("Specify Input Files"); 
_settextposition( 10, 30); 
_setcolor( 7 ); 
printf("ISAAC input (ga_isaac.dat) 
scanf("%s", Sdatafilename) ; 

), "sserife"), 

(_getgtextextent( "Specify Input Files" ) 12); 

"); 

"); 
_settextposition( 12, 30); 
printf("GA input (ga_data.dat): 
scanf("%s", sfilename); 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "Specify Output Files* 1/2); 
_moveto( xfon, 275 ) ; 
_setcolor( 15 ) ,- 
_outgtext ("Specify Output Files"),- 
_settextposition( 22, 30); 
_setcolor( 7 ); 
printf ("GA summary output (ga_stat.dat):   "),- 
scanf("%s", soutfilename); 

// default is to NOT show graphics on screen 
show_graphics_flag = 0; 

// default is to NOT show fitness on screen 
show_fitness_flag = 0; 

// default is to NOT show chromosome on screen 
show_chromosome_flag = 0; 

// initialize built-in time counter 
_tzset(); 
time( istart_time ); 

// open output update file 
if ( (ga_stat=fopen(outfilename, "w")) == NULL) { 

printf(" Cannot open GA data file\n"); 
exit(l); 

} 

_strdate( dbuffer ); 
fprintf( ga_stat, "start date: %s \n", dbuffer ); 
_strtime( tbuffer ); 
fprintf( ga_stat, "start time: %s \n", tbuffer ); 

// initialize 
if ( (infile=fopen(filename,"r")) == NULL) { 

fprintf(ga_stat,"\nCannot open input file\n"); 
exit(l); 

} 

S, S, S); 

// read data 
fscanf(infile, "%s", s) 
fscanf(infile. "%s", s) 
fscanf(infile, "%s%s%s" 
fscanf(infile, "%s", s) 
fscanf(infile, "%s". s) 
fscanf(infile. "%s%i" ,s, 
fscanf(infile, "%s%i" ,s. 
f scanf(infile. "%s%i" ,s, 

&num_generations) ; 
&num_initial_conds); 
&max_time_to_goal); 

fscanf(infile,"%s%lf",s, ipower); 
fscanf(infile,"%s%i",s, &best_flag); 

CHROM_LENGTH=3 5 ; 
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fscanf(infile,"%s%i",s, &min_dist_genes_flag); 
if (min_dist_genes_flag==l) CHROM_LENGTH=42 ; 

fscanf(infile,"%s%i",s, &initial_condition_genes_flag); 
if (initial_condition_genes_flag==l)CHROM_LENGTH=45; 

fscanf(infile, "%s", s); 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 

"%s", s); 
"%s%s%s%s' 
"%s", s); 
"%s", s); 
%s%lf",s, 
%s%lf,s, 
%s%lf',s. 

s); 

«emission.alpha_l); // minimize time to goal 
&mission.alpha_2); // minimize number of friendly losses 

// maximize number of enemy losses 
// maximize survival ratio of alive to enemy forces 
// minimize cummulative distance between red CM and blue flag 

Emission.alpha_6); // maximize cummulative distance between blue CM and red flag 
Emission.alpha_7); // maximize number of friendly forces near enemy flag 
&mission.alpha_8); // minimize number of enemy forces near friendly flag 
Emission.alpha_9),- // minimize total number of friendly fratricide hits 
Emission.alpha_10),-// maximize total number of enemy fratricide hits 

Stmission. alpha_3); 
emission. alpha_4); 
Emission. alpha_5); 

s); 

fscanf(infile,"%s%lf",s, 
fscanf(infile,"%s%lf,s, 
fscanf(infile,"%s%lf",s, 
fscanf(infile,"%s%lf",s, 
fscanf(infile,"%s%lf",s, 
fscanf(infile,"%s%lf",s, 
fscanf(infile,"%s%lf,s, 
fscanf(infile, "%s", s); 
fscanf(infile, "%s", s); 
fscanf(infile, "%s%s%s", 
fscanf(infile, "%s", s); 
fscanf(infile, "%s", s); 
fscanf(infile,"%s%i",s, &termination_code); 

// normalize penalty weights 
if (termination_code == 4) mission.alpha_l=0; // do not minimize time_to_goal if no termination 
znorm = mission. alpha_l + mission.alpha_2 + mission. alpha_3 + mission. alpha_4 + 

mission.alpha_5 + mission.alpha_6 + mission.alpha_7 + mission.alpha_8 + 
mission.alpha_9 + mission.alpha_10; 

mission.alpha_l = mission.alpha_l / znorm; 
mission.alpha_2 = mission.alpha_2 / znorm; 
mission.alpha_3 = mission.alpha_3 / znorm; 
mission.alpha_4 = mission.alpha_4 / znorm; 
mission.alpha_5 = mission.alpha_5 / znorm; 
mission.alpha_6 = mission.alpha_6 / znorm; 
mission.alpha_7 = mission.alpha_7 / znorm; 
mission.alpha_8 = mission.alpha_8 / znorm; 
mission.alpha_9 = mission.alpha_9 / znorm; 
mission.alpha_10 = mission.alpha_10 / znorm; 

fscanf(infile,"%s%lf",s, Emission.near_range); 
fscanf(infile,"%s%lf",s, Smission.near_range_num); 
fscanf (infile, "%s%lf ",s,. S.mission.r_CM_f) ; 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, 
fscanf(infile, "%s", 
fscanf(infile, "%s", 

s); 

s,   &lower_bound,   £cupper_bound) ; 

"%s", s); 
"%s", s); 
"%s%s%s", s 

s); 
s); 

for (i=l; i<=CHROM_LENGTH; i++){ 
fscanf(infile, "%s%lf,%lf", 

for (j=0; j<POPSIZE; j++){ 
population!j].fitness=0; 
population[j].rel_fitness=0; 
population[j].cum_fitness=0; 
population[j].lower[i]=lower_bound; 
population[j].upper[i]=upper_bound; 
population[j].gene[i]=randval(population[j].lower[i], populationtj].upper[i]); 

} 
} 
fclose(infile); 

if (best_flag==l){ 
_settextposition( 24, 30); 
printfCGA 'best' output (ga_best.dat):   "); 
scanf ("%s", Stbestfilename) ; 
if ( (bestfile=fopen(bestfilename,"w")) == NULL) { 

fprintf(ga_stat,"\nCannot open 'best personalities' output file\n"); 
exit(l); 

} 
WRITE_FITNESS(bestfile, Smission, termination_code, max_time_to_goal) ; 

} 

_settextposition( 26, 30); 
printf("Output ISAAC-dat file (isaac.dat): "); 
scanf (" %s", Stoutdatafile); 
if ( (outdata = fopenloutdatafile, "w")) == NULL ){ 

printf(" Cannot open ISAAC output data file.Xn"); 
exit(l); 

} 

_unregisterfonts(); 
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„registerfonts( "oemlO.FON" ); 
strcat( strcatl strcpyl list, "f" ), "oemlO"), "'"); 
strcatl list, "h30w24bv" ); 
_get£ontinfo( &fi ); 
_setfont( list ); 

_clearscreen ( _GCLEARSCREEN ) ; 

WRITE_FITNESS(ga_stat, Sffliission, termination_code, max_time_to_goal); 
fprintf(ga_stat, " generation  best    worst   best    worst  average  ave + Standard ave - Standard 

standard\n"); 
fprintf(ga_stat, "  number    value    value   value   value  fitness    deviation     deviation 

deviation\n"); 
fprintf(ga_stat, " (overall) (overall)  (gen)   (gen)   (gen)\n"); 

_setvideomode ( _SRES16COLOR ); 
_setviewport(l,1,799,599); 
_clearscreen ( _GCLEARSCREEN ); 

// seed random number generator 
idum=-31415926; 
zran=ranl(fcidum); 
srand( (unsigned)time( NULL ) ); 

// set generation counter to zero 
generation = 0; 
best_val =0;  // overall best 
worst_val = 1.; // overall worst 
avg = 0; 
previous_best_fitness = 0; 

// display on-screen prompts 
PROMPTS(); 

while(generation < num_generations){ 

// display generation on screen 
_setviewport(l,33,799,85); 
_clearscreen( _GVTEWPORT ); 
_setviewport(l,1,799,599); 
_setcolor( 15 ); 
_unregisterfonts() ; 
_registerfonts( "sserife.FON" ); 
strcat( strcatf strcpyf list, "t" ), "sserife"), "'"),- 
strcat( list, "h30w24bv" ) ; 
_getfontinfo ( Sef i ); 
_setfont ( list ) ,- 

xfon = (vc.numxpixels / 2) - (_getgtextextent( "GENERATION = XXX") / 2); 
_moveto( xfon, 47 ) ; 
_setcolor ( 2 ) ,- 
_outgtext ("GENERATION = •); 
_outgtext( itoa( generation+1, bb, 10) ) ; 
_unregisterfonts(); 
_registerfonts( "oemlO.FON" ); 
strcat( strcatl strcpy( list, "t" ), "oemlO"), "'"),- 
strcatf list, "h30w24bv" ); 
_getf ontinf o ( &f i ) ,- 
_setfont( list ); 

if (generation > 0){ 
select(),-     // select survivors from population 
crossover(CHROM_LENGTH); // perform a single-point crossover 
mutate (CHROM_LENGTH);    // mutate a gene 
// initialize ave fitness 
avg=0; 
// update progress-report 
progress_report(generation, ga_stat, &best_val, &worst_val, &avg, 

best_fitness_gen, worst_fitness_gen) ,- 
if(best_flag==l){ // then write best personality genes to file 

if (population[POPSIZE].fitness > previous_best_fitness){ 
fprintf(bestfile,"\n") ; 
fprintf (bestfile, "Generation = %3i \n",generation) ,- 
fprintf(bestfile,"Fitness=%4.4f",population[POPSIZE].fitness); 
WRITE_CHROM_TO_FILE(POPSIZE, bestfile, initial_condition_genes_flag) ,- 
previous_best_fitness = population[POPSIZE].fitness; 

} 
} 

} 

// initialize best and worst fitness for current generation 
best_fitness_gen = 0; 
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-red.w4rdeff_a; 

-red.w5rdeff_a; 

-red.w6rde£f_a; 

worst_fitness_gen = 1.; 

um im i ii i ii im 111 ii i ii 111 im 1111111111111 ii 1111111111111111111 a 1111 ii 11 in ii 
ii 
II calculate "mission penalty" for nth generation; 
// i.e. run ISAAC 
// 
iimmmmmmmimmmimmimmmmiimmmmmmmmim 
for (mem=0; mem<POPSIZE; mem++){ // do for each member of the population 

// first read-in default values 
if ( (datafile=fopen(datafilename,"r'l) == NULL) { 

printfC Cannot open ISAAC data file\n"); 
exit(l); 

} 

INPUT_FILE_DATA(datafilename,  fcbattle,   Sired,   &blue,   Scidum) ; 

fclose(datafile); 

// now re-define ISAACA force with genome-prescribed personality 
red.irsrange = (int)(population[mem].gene[ 1 ]); 

if (red.irsrange == 0)red.irsrange=l; 
red.iredfrange = (int)(population[mem].gene[2]); 

if (red.iredfrange == 0)red.iredfrange=l; 
// make sure F-range <= S-range 
if (red.iredfrange > red.irsrange)red.iredfrange = red.irsrange;; 

red.iradvrange[l] = (int) (population[mem] .gene[3]) ,- 
if (red.iradvrangetl] == 0)red.iradvrange[l]=l; 

red.wlrdeff_a = (float)(population[mem].gene[4]); 
if (population[mem] .gene[5] < .5)red.wlrdeff_a = -red.wlrdeff_a; 

red.w2rdeff_a = (float)(population[mem].gene[6)); 
if (population[mem] .gene[7] < .5)red.w2rdeff_a = -red.w2rdeff_a; 

red.w3rdeff_a = (float)(population[mem].gene[8]); 
if (population[mem].gene[9] < .5)red.w3rdeff_a = -red.w3rdeff_a; 

red.w4rdeff_a = (float)(population[mem].gene[10]); 
if (population[mem].genetll] < .5)red.w4rdeff_a 

red.w5rdeff_a = (float)(population[mem].gene[12]); 
if (population[mem].gene[13] < .5)red.w5rdeff_a 

red.w6rdeff_a = (float)(population[mem].gene[14]); 
if (population[mem].gene[15] < .5)red.w6rdeff_a 

red.wlrdeff_i = (float)(population[mem].gene[16]); 
if (population[mem].gene[17] < .5)red.wlrdeff_i 

red.w2rdeff_i = (float)(population[mem].gene[18]); 
if (population[mem].gene[19] < .5)red.w2rdeff_i 

red.w3rdeff_i = (float)(population[mem].gene[20]); 
if (population[mem].gene[21] < .5)red.w3rdeff_i 

red.w4rdeff_i = (float)(population[mem].gene[22]); 
if (population[mem].gene[23] < .5)red.w4rdeff_i 

red.w5rdeff_i = (float)(population[mem].gene[24]); 
if (population[mem].gene[25] < .5)red.w5rdeff_i 

red.w6rdeff_i = (float)(population[mem].gene[26]); 
if (population[mem].gene[27] < .5)red.w6rdeff_i = -red.w6rdeff_i; 

red.iradv_a[l] = (int)(population[mem].gene[28]); 
red.irclus_a[l] = (int)(population[mem].gene[29]); 
red.iroom_a[l] = (int)(population[mem].gene[30]); 

if (population[mem].gene[31] < .5)red.ircom_a[1] = -red.ircom_a[1]; 
red.iradv_i[1] = (int)(population[mem].gene[32]); 
red.irclus_i[l] = (int)(population[mem].gene[33]); 
red.ircom_i[1] = (int)(population[mem].gene[34]); 

if (population[mem].gene[35] < .5)red.ircom_i[l] = -red.ircom_i[l]; 
if (min_dist_genes_flag==l){ 

if (population[mem].gene[36] > .5)( // the use min dist genes (37-42) 
red.zrfromrmindist_a= (float)(population[mem].gene[37]); 
red.zbfromrmindist_a= (float)(population[mem].gene[38]); 
red.zrfromrgmindist_a= (float)(population[mem].gene[39]); 
red.zrfromrmindist_i= (float) (population[mem] .gene[40]) ,- 
red.zbfromrmindist_i= (float)(population[mem].gene[41]); 
red.zrfromrgmindist_i= (float)(population[mem].gene[42]); 

} 
else{ 

red.zrfromrmindist_a= 0; 
red.zbfromrmindist_a= 0; 
red.zrfromrgmindist_a= 0; 
red.zrfromrmindist_i= 0; 
red.zbfromrmindist_i= 0; 
red.zrfromrgmindist_i= 0; 

} 
} 
else( 
population[mem].gene[36] = 0; 
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population[mem].gene[37] 
population[mem].gene[38] 
population[mem].gene[39] 
population[mem].gene[40] 
population[mem].gene[41] 
population[mem].gene[42] 
red.zrfromrmindist_a= 0; 
red.zbfromrmindist_a= 0; 
red.zrfromrgmindist_a= 0; 
red.zrfromrmindist_i= 0; 
red.zbfromrmindist_i= 0; 
red.zrfromrgmindist_i= 0; 

} 

if (initial_condition_genes_flag==l)( 
if ( population[mem].gene[43] <= sqrt(battle.isize)+l ){ 

battle.ibattlebox_red_length = (int)(sqrt(battle.isize)) + 2; 
battle.ibattlebox_red_width = (int)(sqrt(battle.isize)) + 2; 

} 
else{ 

battle.ibattlebox_red_length = (int)(population[mem].gene[43]); 
battle.ibattlebox_red_width = (int)(population[mem].gene[43]); 

} 
battle.ibattlebox_red_cen_x 
battle.ibattlebox_red_oen_y 

} 
elsel 

population[mem].gene[43] 
population[mem].gene[44] 
population[mem].gene[45] 

} 

(int)(population[mem].gene[44]); 
(int)(population[mem].gene[45]); 

// overwrite the ISAACA data file with new data 
if ( (datafile = fopenfdatafilename, "w")) == NULL ){ 
printfC Cannot open ISAAC data file.\n"); 
exit(l); 

} 

WRITE_DATA_FILE(datafile, Sbattle, «red, &blue); 

// now read-in and initialize using updated system values 
if ( (datafile=fopen(datafilename,"r")) == NULL) { 

printf(" Cannot open ISAAC data file.\n"); 
exit(l); 

} 

INPUT_FILE_DATA(datafilename, fcbattle, &red, &blue, Sddum) ; 

// find minimal possible time to goal 
zx= (float)(red.redgoalx) - 

(float)(battle.ibattlebox_red_cen_x) + (float)(.5*battle.ibattlebox_red_length); 
zy= (float)(red.redgoaly) - 

(float)(battle.ibattlebox_red_cen_y) + (float)(.5*battle.ibattlebox_red_width); 
min_time_to_goal = (int)( sqrtl zx*zx + zy*zy) ) - 1; 
max_CM_dist = (int)( 1.4142135 * battle.isize) + 1; 

// find maximum number of near-goal ISAACAs 
blue_in_RG_max = 0; 
red_in_BG_max = 0; 
range = (int)(mission.near_range); 
for (i=blue.bluegoalx-range; i<=blue.bluegoalx+range; i++){ 

for (j=blue.bluegoaly-range; j<=blue.bluegoaly+range; j++){ 
if (i<=battle.isize && i>=l && j<=battle.isize && j>=l) ++blue_in_RG_max; 

} 
} 
if (blue_in_RG_max > blue.ibluenum)blue_in_RG_max=blue.ibluenum; 
for (i=red.redgoalx-range; i<=red.redgoalx+range; i++){ 

for (j=red.redgoaly-range; j<=red.redgoaly+range; j++){ 
if (i<=battle.isize && i>=l && j<=battle.isize && j>=l) ++red_in_BG_max; 

) 
} 
if (red_in_BGjnax > red.irednum)red_in_BG_max=red.irednum; 

// find minimum time in which RED can reach BLUE flag-containment area 
zx= (float)(red.redgoalx - range) - 

(float) (battle.ibattlebox_red_cen_x) + (float) (.5*battle.ibattlebox_red_length) ,- 
zy= (float)(red.redgoaly - range) - 

(float) (battle.ibattlebox_red_cen_y) + (float) (.5*battle.ibattlebox_red_width) ,- 
min_containment_time_red = (int)( sqrt( zx*zx + zy*zy) ) - 1; 
zx= (float)(blue.bluegoalx + range) - 

((float)(battle.ibattlebox_blue_cen_x) - (float)(.5*battle.ibattlebox_blue_length)); 
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zy= (float)(blue.bluegoaly + range) - 
((float)(battle.ibattlebox_blue_cen_y) - (float)(.5*battle.ibattlebox_blue_width)); 

min_containment_time_blue = (int)( sqrt( zx'zx + zy'zy) ) - 1; 
min_containment_time =  min(min_containment_time_red, min_containment_time_blue); 

fclose(datafile); 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimtiiiiiiii immun min 
II 
II Now run ISAAC and compute "mission objective" penalty 
//        average over num_initial_conds 
// 
mmiiiiiimi i m um mim minim i mim minium minium urn 
for (iterations=l; iterations<=num_initial_conds; iterations**){ 

// initialize fratricide counters 
battle.red_frat_count=0; 
battle.blue_frat_count=0; 

// initial GOAL_STATS counters 
mission.red_near_BF[iterations] = 0; 
mission.blue_near_RF[iterations] = 0; 

// initialize combat battlefield 
INITIALIZE_FIELD(&battle, &red, Sblue, iflag, Scidum); 

// initialize time counter 
itime = 0; 

1111 m 11 ii 11111111111 mmim mi 11 in i m mi 1111 m m 111111111111 ii 111111 
ii 
II START MAIN DYNAMICS LOOP 
// 
mmmmmmmmmmimmmmmmmmmimiimimiiiimi 
++itime;  // increment time counter 

// dump progress report to screen 
SCREEN_UPDATE(itime, iterations, mem, generation, num_generations, 

num_initial_conds, max_time_to_goal, avg, best_val, 
worst_val, &best_fitness_gen, &worst_fitness_gen, 
population[mem-1].fitness); 

// check to see if graphics are to be displayed on screen 
if (show_graphics_flag == 1){ 

SHOW_GRAPHICS(5cbattle, &red, &blue, Emission, termination_code, 
max_time_to_goal) ; 

} 

// check to see if GOAL_STATS are to be calculated and updated 
if ( mission.alpha_7 != 0 || // friendly_near_enemy_F weight is not zero 

mission.alpha_8 != 0 j j // enemy_near_friendly_F weight is not zero 
termination_code ==2  // terminate run if number of ISAACAs > N 
) { //do only if min_time_to_containment has been reached 

if (itime >= min_containment_time){ 
// initialize termination flag; if =1 after then = 1 
termination_flag = 0; 
GOAL_STATS(iterations, &mission, battle.isize, &red, &blue, 

&termination_flag, blue_in_RG_max, red_in_BG_max) ,- 
// has termination condition been satisfied? 
if (termination_code == 2 && termination_flag == 1) goto goal; 

) 
) 
// check to see if CENTER_MASS is to be calculated and updated 
if ( mission.alpha_5 != 0 || // friendly_CM_to_enemy_flag weight is not zero 

mission.alpha_6 != 0 || // enemy_CM_to_friendly_flag weight is not zero 
termination_code ==3  // terminate run if CM within range r_CM 
){ 

// initialize termination flag; if =1 after then = 1 
termination_flag = 0; 
CENTER_MASS(iterations, emission, &red, iblue, &termination_flag, 

max_CM_dist); 
// has termination condition been satisfied? 
if (termination_code == 3 && termination_flag == 1) goto goal; 

} 

// has maximum time been reached? 
if (itime == max_time_to_goal) goto goal; 

// 
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newired: 

newiblue: 

//    Should order of move selection be shuffled during each iteration? 
// 
//***************************************************************************** 
if (battle.imove_selection == 1){ // select moves in fixed order 

for (j=l; j<=red.irednum; ++j){ 
redlabel_randomized[j] = j; 

} 
} 
else{ 

//************************************************************************ 

Randomize order in which to consider moves for red ISAACAs: 
'i' is the actual label and the array redlabel_randomized[j] 

******************** 

} 

// 
// 
// 
// 
//*************** 
icount=0; 
for (j=l; j<=red.irednum; ++j){ 

// select random label between 1 and red.irednum 
i = (int)(getrandom( 0, red.irednum, fcidum ))+l; 
// test to see if label has already been used 
for (jj=l; jj<=icount; ++jj){ 

if (redlabel_randomized[jj] == i) goto newired 
} 
++icount; 
redlabel_randomized[j] = i; 

} 

******************************* 

if (battle.imove_selection == 1){ // select moves in fixed order 
for (j=l; j<=blue.ibluenum; ++j){ 

bluelabel_randomized[j] = j; 
} 

} 
else{ 

//************************************************************************ 

Randomize order in which to consider moves for blue ISAACAs: 
'i' is the actual label and the array bluelabel_randomized[j] 

************************************** 

// 
// 
// 
// 
//****************************** 
icount=0; 
for (j=l; j<=blue.ibluenum; ++j){ 

II  select random label between 1 and red.irednum 
i = (int)(getrandom( 0, blue.ibluenum, sidum ))+l; 
// test to see if label has already been used 
for (jj=l; jj<=icount; ++jj){ 

if (bluelabel_randomized[jj] == i) goto newiblue; 
} 
++icount; 
bluelabel_randomized[j] = i; 

} 

if( _kbhit 0 ){ 
buffer = _getch(); 
switch (buffer) { 

case ' c': / / chromosome toggle 
show_chromosome_flag = (show_chromosome_flag + 1) % 2; 
if ( show_chromosome_flag==0) { 

_setviewport(555,151,799,580>; 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,1,799,599); 

} 
else{ // show chromosome 

SHOW_CHROM0S0ME(mem, initial_condition_genes_flag) ; 
} 
break; 

case 's': // store current chromosome to file 
_setviewport(260,575,680,590); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,1,799,599); 
//_moveto( 270, 562 ); 
_setcolor ( 14 ) ,- 
xfon = (vc.numxpixels 12)- 

(_getgtextextent( "Output-data file name ? " ) / 2); 
_moveto( xfon, 562 ) ,- 
_outgtext ("Output-data file name ? "); 
//_outgtext("     Output-data file name ? "); 
_settextposition( 36, 66 ); 
scanf("%s", Scurrentper); 
if ( (current = fopenlcurrentper, "w")) == NULL ){ 
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printf!" Cannot open ISAAC output data file.Nn"); 
exit(l) ; 

> 
// dump current personality to file 
WRITE_DATA_FILE(current, Sibattle, Sred, &blue); 
//WRITE_CHROM_TO_FILE(mem, current, initial_condition_genes_flag) ; 
fclose(current); 
_setviewport(l,550,799,580); 
_clearscreen ( _GVIEWPORT ) ; 
_setviewport(l, 1,799,599) ,- 
break; 

case 'f': // graphics toggle 
show_fitness_flag = (show_fitness_flag + 1) % 2; 
if ( show_fitness_flag==0){ 

_setviewport(1,200,290,580); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,1,799,599); 

} 
else{ // show fitness 

SHOW_FITNESS(&mission, termination_code, max_time_to_goal); 
} 
break; 

case 'b': // graphics toggle 
show_graphics_flag = (show_graphics_flag + 1) % 2; 
if ( show_graphics_flag==0){ 

_setviewport(291,200,551,580); 
_clearscreen( _GVIEWPORT ); 
_setviewport(l,l,799,599); 

} 
break; 

case 'q': // quit 
time( &finish_time ); 
elapsed_time = difftime( finish_time, start_time ); 
if (generation == 0){ 

keep_the_best(CHROM_LENGTH) ;  // identify "best" ISAACA personality 
} 
else{ 

elitist (CHROM_LENGTH) ;  // find the "best" ISAACA personality 
} 

// decode current best chromosome to ISAACA personality 
DECODE_BEST(&red, min_dist_genes_flag, initial_condition_genes_flag); 

WRITE_DATA_FILE(outdata, &battle, Sired, Siblue) ; 

// dump best current personality to file 
fprintf(ga_stat,"\n Interim best personality: \n"); 
WRITE_CHROM_TO_FILE(POPSIZE, ga_stat, initial_condition_genes_flag) ; 

fprintf(ga_stat,"\n\n Best fitness=%4.4f",population[POPSIZE].fitness); 
fprintf (ga_stat, "\n\n") ,- 
_strdate ( dbuf f er ) ,- 
fprintf! ga_stat, "start date: %s \n", dbuffer ) ,- 
_strtime( tbuffer ); 
fprintf! ga_stat," star t time: %s \n", tbuf f er ) ,- 
fprintf! ga_stat,"elapsed time: %6.0f seconds \n", elapsed_time ); 
fclose(ga_stat); 
_setviewport(260,565,680,580) ; 
_clearscreen ( _GVIEWPORT ) ; 
_setviewport(l,1,799,599); 
_moveto( 270, 565 ); 
_setcolor( 14 ); 
_setgtextvector ( 1, 0 ) ; 
_outgtext(" Run Terminated"); 
_getch(); 
exit(l); 
if (best_flag==l)f close(bestfile) ,- 
break; 

} 
} 

// 
// Determine what blue isaacs are in red's neighborhood 
// 

for (i=l; i<=red.irednum; ++i) { 
ibinrnum = BLUEINRED! i, &red, &blue, ilblbinr ); 

} 

//* ********************************** ******** 
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// 
// Determine what red isaacs are in blue's neighborhood 
// 

for (i=l; i<=blue.ibluenum; ++i) { 
irinbnum = REDINBLUEI i, &red, &blue, ilblrinb); 

} 

// 
// Adjudicate combat attrition 
// 

if (battle.max_combat_flag == 1){ // then no limit on number of 
// simultaneous engagements 

COMBAT( ibattle, &red, Sblue, Sidum, ilblbinr, ilblrinb); 
} 
else{ // use routine that puts limit on the number of 

// simultaneous engagements 
C0MBAT_2( ibattle, ired, Sblue, Sidum, ilblbinr, ilblrinb); 

} 

// 
// UPDATE RED ISAACAs 
// 

for (j=l; j<=red.irednum; ++j) { 

11 *********** ****i(***** ************** ****i(***ic*^it***^*i(***ie^***********^*** 

// 
// Get randomized label 
// 
I J ********** ***************************1f*fii-k-k-k************** *********** ****** 

i = redlabel_randomized[j]; 

//A************************************************** 

//. 
// Do only if red ISAAC is alive or injured 
// 

if ( red.rstatusfi] > 0 )  { 

irinrnum = 0; 
ibinrnum = 0; 
iradvnum = MAXISAACNUM; 
ibinrinjnum = 0; 
irinrinjnum = 0; 

RED_SENSOR(&irinrnum, &ibinmum, &iradvnum, &ibinrinjnum, Siirinrinjnum, i, 
ired, &blue, ilblbinr); 

// 
//  Adapt red weights; i.e. determine values for red.wired, red.w2red, 
//  red.w3red, red.w4red, red.w5red, red.w6red to be used for this time step 
// 
//********************************************#********************* 
ADAPT_RED_ISAACA_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, &red) ; 

// 
// Are communications to be used between ISAACAs? 
// 
//A************************************************************************* 

if (red.red_COMM_flag != 0) { // if COMMs 'on' then get COMM data 
RED_COMM_INFO(i, £=red, Sblue) ; 

} 

// 
//        Compute expected penalty for each possible move; 
//        isaac's move will be into square with least penalty 
// 
//************************************************** 

igoalflag=0; // if remains equal to 0 then goal not reached 
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// 
// Initialize minimum sum value 
// 

zmin = (float)(99999.); 

// get movement range 
imrr = red.iredmoverange; 
if (red.rstatusli] == 1) imrr = 1; // if injured, make sure max range equals 1 

if (red.red_COMM_flag == 1){ // use 'COMM' routine 
zmin = COMPUTEEEDPENALTY_COMM(i, imrr, Scigoalflag, irinrinjnum, ibinrinjnum, 

zmin, iflag, z, Sebattle, fcred, Siblue); 
} 
else{ 

zmin = COMPUTEREDPENALTY(i, imrr, fcigoalflag, irinrinjnum, ibinrinjnum, 
zmin, iflag, z, Stbattle, &red, Siblue); 

} 

if ( igoalflag == 1 &&.  termination_code ==1) { 
goto goal; 

} 

// 
//    If zmin = 99999 then there are no viable moves —> do nothing 
// 

if ( zmin == 99999. ){ 
// 
//do nothing 
// 

if (imrr == 1){ 
imove = 5; 

} 
else{ 

imove = 13; 
} 

} 
else{ 

// 
//       See what possible local moves correspond to zmin 
// 

imc = 0; // initialize local count variable 
for (imx = - imrr; imx <= imrr; ++imx) { 

for (imy = - imrr; imy <=  imrr; ++imy) { 
if (iflagtimx + 2][imy + 2] == 1 && 

z[imx + 2][imy + 2] == zmin){ 
// add another candidate move to count 
++imc; 
// select candidate move 
if (imrr == 1){ 

imovecand[imc] = imx + 5 - 3 * imy; 
} 
else{ 

imovecand[imc] = imx + 13 - 5 * imy; 
} 

} 
} 

} 

//it************************************************************************ 

// 
//     Actual move is randomly selected from among the imc candidates 
// 

if (imc == 1){ 
imove = imovecand[l]; 
} 

else{ 
zmoveprob = (float) (0.0001 * getrandomd,10000,Scidum)) ; 
for (im = 1; im < imc + 1; ++im) { 

if (zmoveprob > (float) (im - 1) / (float) (imc) Set 
zmoveprob <= (float)(im) / (float)(imc) )( 
imove = imovecand[im]; 

} 
) 

} 
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} 

s/*******************************************^ 

// 
//        Move red to new square for which penalty is minimum 
// 

MOVERED (i, imrr, imove, Sibattle, Sired); 

) // end if red.rstatus[i]!=0 test 

} // end i = 1 to red.irednum loop 

//A************************************************************************ 

// 
// UPDATE BLUE ISAACAS 
// 
//A************************************************************************* 

for (j=l; j<=blue.ibluenum; ++j) { 

// get randomized label 
i = bluelabel_randomized[j]; 

// do only if blue ISAAC is alive or injured 
if ( blue.bstatusli] > 0 ){ 

ibinbnum = 0; 
irinbnum = 0; 
ibadvnum = MAXISAACNUM; 
irinbinjnum = 0; 
ibinbinjnum = 0,- 

BLUE_SENSOR(&ibinbnum, Siirinbnum, Sibadvnum, Scirinbinjnum, Scibinbinjnum, i, 
&red, Scblue, ilblrinb); 

// adapt blue weights 
ADAPT_BLUE_ISAACA_WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, fcblue) ; 

// are communications to be used between ISAACAs? 
if (blue.blue_COMM_flag != 0){ // if COMMs 'on' then get COMM data 

BLUE_COMM_INFO(i, Sired, Sblue) ; 
} 

// compute expected penalty for each possible move; 

// initialize minimum sum value 
zmin = (float)(99999.); 

// get movement range 
imbr = blue.ibluemoverange; 
if (blue.bstatusli] == 1) imbr = 1; // if injured, make sure max range equals 1 

if (blue.blue_COMM_flag == 1) { // use 'COMM' routine 
zmin = COMPUTEBLUEPENALTY_COMM(i, imbr, Sigoalflag, irinbinjnum, ibinbinjnum, 

zmin, iflag, z, Sibattle, &red, Sblue); 
} 
else( 

zmin = COMPUTEBLUEPENALTY(i, imbr, Scigoalflag, irinbinjnum, ibinbinjnum, 
zmin, iflag, z, Sibattle, &red, &blue); 

} 

// if zmin = 99999 then there are no viable moves --> do nothing 
if ( zmin == 99999. ){ 
//do nothing 

if (imbr == 1){ 
imove = 5; 

} 
else{ 

imove = 13; 
} 

} 
else{ 
// see what possible local moves correspond to zmin 

imc = 0; 
for (imx = -imbr; imx <= imbr; ++imx) { 

for (imy = -imbr; imy <= imbr; ++imy) { 
if (iflag[imx + 2][imy + 2] == 1 && 

z[imx + 2][imy + 2] == zmin){ 
// add another candidate move to count 
++imc; 
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// select candidate move 
if (imbr == 1){ 

imovecand [imc] = imx + 5 - 3 * imy; 
} 
else{ 

imovecand [imc] = imx + 13 - 5 * imy; 
} 

} 
} 

} 

// actual move is randomly selected from among the imc candidates 
if (imc == 1){ 

imove = imovecand[1]; 
} 
else{ 

zmoveprob = (float)(0.0001 * getrandomd,10000,Sidum)); 
for (im=l; im<imc+l; ++im) { 

if (zmoveprob > (float)(im - 1) / (float)(imc) && 
zmoveprob <= (float)(im) / (float)(imc) ){ 
imove = imovecand[ im); 

} 
} 

} 
} // end if zmin=99999 

// move red to new square for which penalty is minimum 
MOVEBLUE (i, imbr, imove, Sbattle, Siblue); 

} //end if blue.bstatusti]!=0 test 

} // end i = 1 to blue.ibluenum loop 

goto start; 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II 
II Run is terminated: calculate penalty 
// 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

goal: actual_time = itime; 
if (itime < min_time_to_goal) itime = min_time_to_goal; 

// time to reach blue flag 
mission. time_to_goal [iterations] = 

pow( (double)(max_time_to_goal - itime)/ 
(double)(max_time_to_goal - min_time_to_goal), power ); 

// count reds 
ired=0; 
for (i=l; i<=red.irednum; i++){ 

if (red.rstatus[i) > 0){ 
++ired; 

} 
} 
// count blues 
iblue=0; 
for (i=l; i<=blue.ibluenum,- i++) { 

if (blue.bstatus[i] > 0){ 
++iblue; 

} 
} 

// number of friendly ISAACAs remaining 
mission.total_friendly_losstiterations] = 

pow( (double)(ired)/(double)(red.irednum), power); 

// number of enemy ISAACAs killed 
mission.total_enemy_loss[iterations] = 

pow( (double)(blue.ibluenum - iblue)/(double)(blue.ibluenum), power); 

// normalized ratio of surviving ISAACAs 
if (iblue==0) iblue=l; 
tl = (double)(1.0/ (double)(red.irednum)); 
t3 = (double)(1.0/(double)(iblue)); 
t7 = (double)(1.0/(double)(blue.ibluenum-1.0)); 
tl7 = (double)(ired*tl*t3«blue.ibluenum/((blue.ibluenum-2.0)*t7*ired*tl*t3*blue.ibluenum* 

blue.ibluenum*t7)); 
mission.survival_ratio[iterations] = pow( tl7 , power); 

// center of mass distance of RED from opposing flag 
if (mission.alpha_5 != 0){ 
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mission.red_CM_to_BF_dist[iterations] = 
pow( (1. - mission.red_CM_to_BF_dist[iterations]/(double)(actual_time)), power); 

} 
else{ 

mission.red_CM_to_BF_dist[iterations] = 0; 
} 

// center of mass distance of BLUE from opposing flag 
if (mission.alpha_6 != 0){ 

mission.blue_CM_to_RF_dist[iterations] = 
pow( mission.blue_CM_to_RF_dist [iterations] / (double)(actual_time), power) ,- 

} 
eiset 

mission.blue_CM_to_RF_dist[iterations] = 0; 
} 

// average number of RED ISAACAs near within opposing flag area 
// (take average over actual_time - min_containment_time 
if (mission.alpha_7 != 0){ 

// average over evolution steps 
mission.red_near_BF[iterations] = 

pow(mission.red_near_BF[iterations]/ 
(double) (actual_time- min_containment_time),power) ,- 

} 
else{ 

mission.red_near_BF[iterations] = 0; 
} 

// average number of BLUE ISAACAs near within opposing flag area 
// (take average over actual_time - min_containment_time 
if (mission.alpha_7 != 0 || mission.alpha_8 != 0){ 

// average over evolution steps 
mission.blue_near_RF[iterations] = 

pow( (1. - mission.blue_near_RF[iterations]/ 
(double)(actual_time- min_containment_time)).power); 

} 
else{ 

mission.blue_near_RF[iterations] = 0; 
} 

// fratricide 
if (battle.red_fratricide_flag==l){ 

zz = (double) (battle.red_frat_count)/(double) (red.irednum),- 
if (zz > l)zz=l.; 
mission.red_fratricide[iterations] = pow( 1. - zz, power); 

} 
else{ 

mission.red_fratricide[iterations] = 0; 
} 
if (battle.blue_fratricide_flag==l){ 

zz = (double)(battle.blue_frat_count)/(double)(blue.ibluenum) ; 
if (zz > l)zz=l.; 
mission.blue_fratricide[iterations] = pow( zz, power),- 

} 
else{ 

mission.blue_fratricide[iterations] = 0; 
} 

} // iterations loop 

// calculate "mission fitness" (to maximize) 
// average over num_initial_conds for given personality 
population[mem].fitness = 0; 
for (iterations=l; iterations<=num_initial_conds; iterations**){ 

population[mem].fitness = population[mem].fitness + 
mission.alpha_l * mission.time_to_goal[iterations] + 
mission.alpha_2 * mission.total_friendly_loss[iterations] + 
mission.alpha_3 * mission.total_enemy_loss[iterations] + 
mission.alpha_4 * mission.survival_ratio[iterations] + 
mission.alpha_5 * mission.red_CM_to_BF_dist[iterations] + 
mission.alpha_6 * mission.blue_CM_to_RF_dist[iterations] + 
mission.alpha_7 * mission.red_near^BF[iterations] + 
mission.alpha_8 * mission.blue_near_RF[iterations] + 
mission.alpha_9 * mission.red_fratricide[iterations] + 
mission.alpha_10 * mission.blue_fratricide[iterations]; 

} 
population[mem].fitness = population[mem].fitness / (double)(num_initial_conds); 

} 

if (generation == 0){ 
keep_the_best (CHROM_LENGTH) ;  // identify "best" ISAACA personality 
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} 
else{ 

elitist(CHROM_LENGTH);  // find the "best" ISAACA personality 
} 

generation**; // update generation counter 
}  // generation loop 

time( &finish_time ); 
elapsed_time = difftime( finish_time, start_time ); 

fprintf(ga_stat,"\n\n Simulation completed\n"); 
fprintf(ga_stat,"\n Best personality: \n"); 

WRITE_CHROM_TO_FILE(POPSIZE, ga_stat, initial_condition_genes_flag) ,- 

fprintf(ga_stat,"\n\n Best fitness=%4.4f",population[POPSIZE].fitness); 
fprint f(ga_stat,"\n\n"); 
_strdate( dbuffer ); 
fprintf( ga_stat,"start date: %s \n", dbuffer ); 
_strtime( tbuffer ); 
fprintf( ga_stat,"start time: %s \n", tbuffer ); 
fprintf( ga_stat,"elapsed time: %6.0f seconds \n", elapsed_time ); 
fclose(ga_stat); 
if (best_flag==l)fclose(bestfile); 

// decode current best chromosome to ISAACA personality 
DECODE_BEST(&red, min_dist_genes_flag, initial_condition_genes_flag); 

WRITE_DATA_FILE(outdata, Sbattle, &red, &blue); 

fclose(outdata); 

_settextposition( 16,■30); 
printfl" Run Complete"); 

} 

//•a*********************************************************************************** 

// 
// Random number generator: 
// Generates a value within bounds 
// 

double randval(double low, double high) 
{ 

double val; 
val=((double)(rand()%1000)/1000.0)*(high - low) + low; 
return(val); 

} 

// 
// keep the best member of the population 
// (the last entry in the array Population has a copy 
// of the best individual) 
// 

void keep_the_best(int CHROMLLENGTH) 
{ 

int mem; 
int i; 
int current_best; 

current_best=l; // initialize index of the best individual 

for (mem=0; mem<POPSIZE; mem++) { 
if (population[mem].fitness > population[POPSIZE].fitness){ 

current_best=mem; 
population[POPSIZE].fitness=population[mem].fitness; 

} 
} 
// once the best member in the population is found, copy the genes 
for (i=l; i<=CHROM_LENGTH; i++) 

population[POPSIZE].gene[i]=population[current_best].gene[i]; 
} 

//**•********************************************************************************** 

// 
//     Elitist function: The best member of the previous generation is stored 
//     as the last in the array. If the best member of the current generation 
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//     is worse then the best member of the previous generation, the latter one 
//     would replace the worst member of the current population 
// 

void elitist(int CHROM_LENGTH) 
{ 

int i; 
double best, worst; // best and worst fitness values 
int best_memher, worst_member;  // indexes of the best and worst member 

best=population[0].fitness; 
worst=population[0].fitness; 
for (i=0; i<POPSIZE - 1; ++i){ 

if(population[i].fitness > population[i+l].fitness){ 
if (population[i].fitness >= best){ 

best=population[i].fitness; 
bes t_member= i; 

} 
if (population[i+1].fitness <= worst){ 

worst=population[i+l].fitness; 
worst_member=i + 1; 

} 
} 
else{ 

if (population[i].fitness <= worst){ 
worst=population[i]-fitness; 
worst_member=i; 

} 
if (population[i+1].fitness >= best){ 

best=population[i+l].fitness; 
best_member=i + 1; 

) 
} 

} 
//if best individual from the new population is better than 
// the best individual from the previous population, then 
// copy the best from the new population; else replace the 
// worst individual from the current population with the 
// best one from the previous generation 

if (best >= population[POPSIZE].fitness){ 
for (i=l; i<=CHROM_LENGTH; i++) { 

population[POPSIZE].gene[i]=population[best_member].gene[i]; 
} 
population[POPSIZE].fitness=population[best_member].fitness; 

} 
else{ 

for (i=l; i<=CHROM_LENGTH; i++){ 
population[worst_member].gene[i]=population[POPSIZE].gene[i]; 

} 
population[worst_member].fitness=population[POPSIZE].fitness; 

} 
} 

//*********************************************************************************** 
// 
// Selection function: Standard proportional selection for 
// maximization problems incorporating elitist model - makes 
// sure that the best member survives 
// 

void select(void) 
{ 

int mem, i, j; 
double sum=0; 
double p; 

// find total fitness of the population 
for (mem=0; mem<POPSIZE; mem++) { 

sum += population[mem].fitness; 
} 

// calculate relative fitness 
for (mem=0; mem<POPSIZE; mem++){ 

population[mem].rel_fitness= population[mem].fitness/sum; 
} 
population!!)] .cum_fitness=population[0] .rel_fitness; 

// calculate cumulative fitness 
for (mem=l; mem<POPSIZE; mem++){ 

population [mem] .cum_fitness= population [mem-1 ] .cum_fitness + 
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population[mem].rel_fitness; 

} 

// finally select survivors using cumulative fitness. 
for (i=0; i<POPSIZE; i++){ 

p=rand()%1000/1000.0; 
if (p<population[0].cum_fitness){ 

newpopulationli]=population[0]; 
} 
else( 

for (j=0; j<POPSIZE;j++){ 
if (p >= population[j].cum_fitness && p<population[j+l].cum_fitness){ 

newpopulationli]=population[j+l]; 
} 

} 
} 

} 

// once a new population is created, copy it back 
for (i=0; i<POPSIZE; i++) population[i]=newpopulation[i]; 

5 

// 
// Crossover operator: 
// carries out a single point crossover between two parents 

// 

void crossover(int CHROM_LENGTH) 
{ 

int mem, one; 
int first =0; // count of the number of members chosen 
double x; 

for (mem=0; mem<POPSIZE; ++mem) { 
x=rand()%1000/1000.0; 
if (x<PXOVER) { 

++first; 
if (first-% 2 == 0){ 

Xover(one, mem, CHROM_LENGTH); 
} 
else{ 

one=mem; 
} 

} 
} 

} 

// 
// performs crossover of two selected parents 
// 
//************************************************************************************* 
void Xover(int one, int two, int CHROM_LENGTH) 
{ 

int i; 
int point; // crossover point 

point=(rand() % (CHROM_LENGTH - 1)) + 1; 
for (i=l; i<=point; i++){ 

swap(Scpopulation[one] .gene[i], &population[two] .gene[i]); 
} 

} 

// 
// swap 2 variables 
// 
//************************************************************************************* 
void swap(double *x, double *y) 
{ 

double temp; 

temp=*x; 
*x=*y; 
*y=temp; 

} 

// 
// Mutation operator 
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// 
void mutate (int CHROM_LENGTH) 
{ 

int i, j; 
double lower_bound, hbound; 
double x; 

for (i=0; i<POPSIZE; i++){ 
for (j=l; j<=CHROM_LENGTH; j++){ 

x=rand()%1000/1000.0; 
if (x<PMUTATION) { 

// find the bounds on the variable to be mutated 
lower_bound=population[i].lower[j]; 
hbound=population[i].upper[j]; 
population[i].gene[j]=randval(lower_bound, hbound); 

} 
) 

yy********************************************************* 

// 
// Progress report (output to file) 
// 

void progress_report(int generation, FILE* ga_stat, double *best_val, double *worst_val, 
double *avg, double best_fitness_gen, double worst_fitness_gen) 

{ 
int i; 
double stddev; // std. deviation of population fitness 
double sum_s<juare; // sum of square for std. calc 
double square_sum; // square of sum for std. calc 
double sum; // total population fitness 

sum=0.0; 
sum_square=0.0 ; 

for (i=0; i<POPSIZE; i++){ 
sum += population[i].fitness; 
sum_square += population[i].fitness * population[i].fitness; 
if (population[i]-fitness < *worst_val) *worst_val=population[i].fitness; 

} 

*avg=sum/ (double) POPSIZE; 
square_sum=(*avg) * (*avg) * POPSIZE; 
stddev=sqrt((sum_square - square_sum)/(POPSIZE - 1)); 
*best_val=population[POPSIZE].fitness; 

fprintf(ga_stat, " %5d      %6.3f   %6.3f  %6.3f  %6.3f  %6.3f      %6.3f %6.3f       %6.3f\n' 

generation, *best_val, *worst_val, best_fitness_gen, worst_fitness_gen, 
*avg, *avg+stddev, *avg-stddev, stddev); 

} 

// 
// Allocate Memory for Structures 

/y********************************************************************************** 

struct battle_parameters *get_bat(void) 
{ 

struct battle_parameters *p ; 

if ( (P = _fmalloc( sizeof(struct battle_parameters) )) == NULL) ( 
_clearscreen( _GCLEARSCREEN ); 
printfl "Insufficient Memory to Run"); 
exit(O) ,- 

} 
return p; 

} 

struct red_parameters *get_red(void) 
{ 

struct red_parameters *p; 

if ( (P = _fmalloc( sizeof(struct red_parameters) )) == NULL) { 
_clearscreen ( _GCLEARSCREEN ) ; 
printfl "Insufficient Memory to Run"); 
exit(0); 

} 
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return p; 
} 

struct blue_parameters *get_blue(void) 
{ 

struct blue_parameters *p; 

if ( (P = _fmalloc( sizeof (struct blue_parameters) )) 
_clearscreen( _GCLEÄRSCREEN ); 
printf( "Insufficient Memory to Run"); 
exit(O); 

} 
return p; 

NULL) { 

/********************************** *********** ********* ***************/ 

Write chromosome of best ISAACA personality to file 
/* 
/* 
/* 
/A********************************************************************* 

void WRITE_CHROM_TO_FILE(int g,   FILE *ga_stat,   int initial_condition_genes_flag) 
{ 

int ii; 

************ 

(int)(population[g].gene[43])) 
(int)(population[g].gene[44])) 
(int)(population[g].gene [45])) 

if (initial_condition_genes_flag==l){ 
fprintf (ga_stat,"\n initial box size = %i" 
fprintf (ga_stat,"\n x-coor = %i" 
fprintf (ga_stat,"\n y-coor = %i" 
fprintf (ga_stat,"\n"); 

} 
fprintf (ga_stat,"\n S-range = %i",(int)(population[g].gene[l])) ; 
ii = (int) (population[g] .gene[2]) ; 
if (ii > (int)(population[g].gene[1))) 

ii=(int)(population[g].gene[l]) ; 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 

(ga_stat,"\n F-range 
(ga_stat,"\n C-range 
(ga_stat,"\n wl_a 
(ga_stat,"\n w2_a 
(ga_stat,"\n w3_a 
(ga_stat,"\n w4_a 
(ga_stat,"\n w5_a 
(ga_stat,"\n w6_a 
(ga_stat,"\n wl_i 
(ga_stat,"\n w2_i 
(ga_stat,"\n w3_i 

,ii); 

(ga_stat,"\n w4_i 
(ga_stat,"\n w5_i 
(ga_stat,"\n w6_i 
(ga_stat, "\n ADV_a 
(ga_stat,"\n CLS_a 
(ga_stat,"\n CBT_a 
(ga_stat,"\n ADV_i 
(ga_stat,"\n CLS_i 
(ga_stat,"\n CBT_i 

if (population[g].gene[36] < 
fprintf (ga_stat, "\n R_R. 
fprintf (ga_stat,"\n R_B_a = 
fprintf (ga_stat,"\n R_RG_a = 
fprintf (ga_stat,"\n R_R_i = 
fprintf (ga_stat,"\n R_B_i = 
fprintf (ga_stat,"\n R_RG_i = 

,(int)(population[g].gene[3])) 
3f",SIGN(population[g].gene[5] 
3f",SIGN(population[g].gene[7] 
3f",SIGN(population[g].gene[9] 

%3.3f",SIGN(population[g].gene[11 
%3.3f",SIGN(population[g].gene[13 
%3.3f",SIGN(population[g].gene[15 
%3.3 f",SIGN(population[g].gene[17 
%3.3f",SIGN(population[g].gene[19 
%3.3f, SIGN (population [g] .gene [21 
%3.3f,SIGN(population[g].gene[23 
%3.3f",SIGN(population[g].gene[25 
%3.3 f",SIGN(population[g].gene[27 

,(int)(population[g].gene[28]) 
,(int)(population[g].gene[29]) 
,SIGN(population[g].gene[31])* 
,(int)(population[g].gene[32]) 
,(int)(population[g].gene[33]) 
SIGN(population[g].gene[35]) 

= %i 
= %i 
= %i 
= %i 
= %i 
= %i 
.5){ 
.a 

»population[g].gene[4]); 
•population[g].gene[6]); 
♦population[g].gene[8]); 
»population[g].gene[10]) 
»population[g].gene[12]) 
»population[g].gene[14]) 
»population[g].gene[16]) 
»population[g].gene[18]) 
»population[g].gene[20]) 
»population[g].gene[22]) 
»population[g].gene[24]) 
»population[g].gene[26]) 

int)(population[g].gene[30])); 

int)(population[g].gene[34])); 
//do not use min_dist genes 37-42 
0.00' 
0.00' 
0.00' 
0.00' 
0.00' 
0.00' 

} 
else{ 

fprintf 
fprintf 
fprintf 
fprintf 
fprintf 
fprintf 

} 
fprintf(ga_stat 

(ga_stat, 
(ga_stat, 
(ga_stat, 
(ga_stat, 
(ga_stat, 
(ga_stat, 

"\n"); 

\n R_R_a 
\n R_B_a 
\n R_RG_a 
\n R_R_i 
\n R_B_i 
\n R_RG_i 

%f" 
%f" 
%f" 
%f 
%f 
%f" 

,population[g].gene[37]) 
,population[g].gene[38]) 
,population[g].gene[39]) 
,population[g].gene[40]) 
,population[g].gene[41]) 
,population[g].gene[42]) 

} 

********** ******** 

Write mission fitness measure to file 

/******************** 
/* 
/* 
/* 
/♦A***************************************** 

void WRITE_FITNESS(FILE *ga_stat,   struct mission_objective *m,   int termination_code, 
int max_time_to_goal) 

{ 

************************** 

*****/ 
*/ 
*/ 
*/ *****/ 
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// print out fitness parameters 
fprintff ga_stat,"\n"); 
fprintff ga_stat, 
fprintf( ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
fprintff ga_stat, 
switch (termination_code) 

case 1: 
fprintff ga_stat, 
break; 

case 2: 
fprintff ga_stat, 

(int)(m->near_range_num) 
break; 

"Fitness Parameters: 
\n"),- 
"time to goal: 
"red loss: 
"blue loss: 
"red CM to blue flag 
"blue CM to red flag 
"red near blue flag: 
"blue near red flag: 
"red fratricide: 
"blue fratricide: 
\n"); 

{ 

\n"); 

%2.21f\n" 
%2.21f\n" 
%2.21f\n" 

: %2.21f\n" 
: %2.21f\n" 
%2.21f\n" 
%2.21f\n" 
%2.21f\n" 
%2.21f\n" 

,m->alpha_l) 
,m->alpha_2) 
,m->alpha_3) 
,m->alpha_4) 
,m->alpha_5) 
,m->alpha_6) 
,m->alpha_7) 
,m->alpha_8) 
,m->alpha_9) 

"termination condition: First RED at goal\n"); 

"termination condition: N(RED)>%i w/R=%i\n" 
(int)(m->near_range)); 

case 3: 
fprintf( 
break; 

case 4: 
fprintf ( 
break; 

ga_stat, "termination condition: RED_CM < %2.21fR_max\n", m->r_CM_f); 

ga_stat, "termination condition: t_max=%3i\n", max_time_to_goal); 

} 
fprintf( ga_stat,"\n"); 

************ **************** r******************** ************************/ 

Write chromosome of best ISAACA personality to file 

/************** ************** *********** **********************************************/ 
void DECODE_BEST(struct red_parameters *redp, int min_dist_genes_flag, 

int initial_condition_genes_flag) 
{ 

// now re-define ISAACA force with genome-prescribed personality 
redp->irsrange = (int)(population[POPSIZE].genetl]); 

if (redp->irsrange == 0)redp->irsrange=l; 
redp->iredfrange = (int)(population[POPSIZE].gene[2]); 

if (redp->iredfrange == 0)redp->iredfrange=l; 
// make sure F-range <= S-range 
if (redp->iredfrange > redp->irsrange)redp->iredfrange = redp->irsrange; 

redp->iradvxange[l] = (int)(population[POPSIZE].gene[3]); 
if (redp->iradvrange[l 

redp->wlrdeff_a = (float 
if (populationlPOPSIZE: 

redp->w2rdeff_a = (float 
if (populationlPOPSIZE! 

redp->w3rdeff_a = (float 
if (populationlPOPSIZE; 

redp->w4rdeff_a = (float 
if (populationlPOPSIZE 

redp->w5rdeff_a = (float 
if (populationlPOPSIZE! 

redp->w6rdeff_a = (float 
if (populationlPOPSIZE: 

redp->wlrdeff_i = (float 
if (populationlPOPSIZE! 

redp->w2rdeff_i = (float 
if (populationlPOPSIZE: 

redp->w3rdeff_i = (float 
if (populationlPOPSIZE 

redp->w4rdeff_i = (float 
if (populationlPOPSIZE 

redp->w5rdeff_i = (float 
if (populationlPOPSIZE 

redp->w6rdeff_i = (float 
if (populationlPOPSIZE 

redp->iradv_a[l] = (int) 
redp->irclus_a[1] = (int 
redp->ircom_a[l] = (int) 

if (populationlPOPSIZE 
redp->iradv_i[l] = (int) 
redp->irclus_i[l] = (int 
redp->ircom_i[l] = (int) 

if (populationlPOPSIZE 

] == 0)redp->iradvrange[1]=1; 
)(populationlPOPSIZE].gene[4]); 
).gene[5] < .5)redp->wlrdeff_a 
)(populationlPOPSIZE].gene[6]); 
].gene[7] < .5)redp->w2rdeff_a 
)(populationlPOPSIZE].gene[8]); 
].gene[9] < .5)redp->w3rdeff_a 
)(populationlPOPSIZE].gene[10]) 
].gene[ll] < .5)redp->w4rdeff_a 
)(populationlPOPSIZE].gene[12]) 
].gene[13] < .5)redp->w5rdeff_a 
)(populationlPOPSIZE].gene[14]) 
].gene[15] < .5)redp->w6rdeff_a 
)(populationlPOPSIZE].gene[16]) 
].gene[17] < .5)redp->wlrdeff_i 
)(populationlPOPSIZE].gene[18]) 
].gene[19] < .5)redp->w2rdeff_i 
)(populationlPOPSIZE).gene[20]) 
].gene[21] < .5)redp->w3rdeff_i 
)(populationlPOPSIZE].gene[22]) 
].gene[23] < .5)redp->w4rdeff_i 
)(populationlPOPSIZE].gene[24]) 
].gene[25] < .5)redp->w5rdeff_i 
)(populationlPOPSIZE).gene[26]) 
].gene[27] < .5)redp->w6rdeff_i 
(populationlPOPSIZE).gene[28]); 
)(populationlPOPSIZE].gene[29]); 
(populationlPOPSIZE].gene[30]); 
].gene[31] < .5)redp->ircom_a[l] 
(populationlPOPSIZE].gene[32]); 
)(populationlPOPSIZE].gene[33]); 
(populationlPOPSIZE].gene[34]); 
).gene[35] < .5)redp->ircom_i[l] 
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if (min_dist_genes_flag==l){ 
if (population[POPSIZE).gene[36] > .5){ // the use min dist genes (37-42) 

redp->zrfromrmindist_a= (float)(population[POPSIZE].genet37]); 
redp->zbfromrmindist_a= (float)(population[POPSIZE].gene[38]); 
redp->zrfromrgmindist_a= (float)(population[POPSIZE].gene[39]); 
redp->zrfromrmindist_i= (float)(population[POPSIZE].gene[40]); 
redp->zbfromrmindist_i= (float)(population[POPSIZE].gene[41]); 
redp->zrfromrgmindist_i= (float)(population[POPSIZE].gene[42]); 

} 
else{ 

redp->zrfromrmindist_a= 0; 
redp->zbfromrmindist_a= 0; 
redp->zrfromrgmindist_a= 0; 
redp->zrfromrmindist_i= 0; 
redp->zbfromrmindist_i= 0; 
redp->zrfromrgmindist_i= 0; 

} 
} 
else{ 
population[POPSIZE].gene[36] = 0 
population[POPSIZE].gene[37] = 0 
population[POPSIZE].gene[38] = 0 
populationtPOPSIZE].gene[39] = 0 
populationtPOPSIZE].gene[40] = 0 
populationtPOPSIZE].gene[41] = 0 
populationtPOPSIZE].gene[42] = 0 
redp->zrfromrmindist_a= 0; 
redp->zbfromrmindist_a= 0; 
redp->zrfromrgmindist_a= 0; 
redp->zrfromntiindist_i= 0; 
redp->zbfromrmindist_i= 0 ; 
redp->zrfromrgmindist_i= 0; 

} 

if (initial_condition_genes_flag==l) { 
battle.ibattlebox_red_length = (int)(populationtPOPSIZE].gene[43]); 
battle.ibattlebox_red_width = (int)(populationtPOPSIZE].gene[43]); 
battle.ibattlebox_red_cen_x = (int)(populationtPOPSIZE).gene[44]); 
battle.ibattlebox_red_cen_y = (int)(populationtPOPSIZE).gene[45)); 

} 
else{ 

populationtPOPSIZE).gene[43] 
populationtPOPSIZE].gene[44] 
populationtPOPSIZE].gene[45] 

} 

************************* ************ *********** 

Show chromosome 

********** ************************ 

***************/ 
*/■ 

*/ 
*/ 

*** / 

/* 
/* 
/* 
void SH0W_CHR0MOSOME (int mem, int initial_condition_genes_flag) 
t 

int iil, Ü2; 

_moveto( 525, 175 ); 
_setcolor( 2 ); 
„outgtext ("    *** RED ISAACA PERSONALITY ***"); 
_moveto( 525, 190 ) ; 
_setcolor( 2 ); 
_outgtext (" CURRENT   BEST"); 
_settextposition( 14, 73 ); 
printf("S-range = %3i   (%3i)",(int)(population[mem].genetl]), (int)(populationtPOPSIZE].genetl))); 
iil = (int)(population[mem].gene[2]); 
if (iil > (int)(population[mem).gene[1])) 

iil=(int)(population[mem].genetl]); 
Ü2 = (int) (populationtPOPSIZE) .gene[2]) ; 
if (Ü2 > (int) (populationtPOPSIZE) .genetl))) 

ii2=(int)(populationtPOPSIZE).genetl]); 
_settextposition( 15, 73 ); 
printf("F-range = %3i  (%3i)",iil, ii2); 
_settextposition( 16, 73 ); 
printf ("C-range = %3i  (%3i)", (int) (population[mem] .gene[3]), (int) (populationtPOPSIZE) .gene [3])) ,- 
_settextposition( 17, 73); 
printf("wl_a = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[5])«population[mem].gene[4], 

SIGN(population[POPSIZE].gene[5])«populationtPOPSIZE].gene[4]); 
_settextposition( 18, 73 ); 
printf("w2_a = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[7))«population[mem].gene[6], 

SIGN(population[POPSIZE].gene[7])«populationtPOPSIZE].gene[6]); 

332 



Appendix E: STATS_X.dat Data Fields 

_settextposition( 19, 73 ); 
printf("w3_a = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[9])«population[mem].gene[8], 

SIGN(population[POPSIZE].gene[9])«population[POPSIZE].gene[8]); 
_settextposition( 20, 73 ); 
printfCw4_a = %+6.2f  (%+6.2f)",SIGN(population[mem].genelll])»population[mem].gene[10], 

SIGN(population[POPSIZE].gene[11])«population[POPSIZE].gene[10]); 
_settextposition( 21, 73 ); 
printf("w5_a = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[13])«population[mem].gene[12], 

SIGN(population[POPSIZE].gene[13])«population[POPSIZE].gene[12]); 
_settextposition( 22, 73 ); 
printf("w6_a = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[15])«population[mem].gene[14], 

SIGN(population[POPSIZE].gene[15])«population[POPSIZE].gene[14]); 
_settextposition( 23, 73 ); 
printf("wl_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[17])«population[mem].gene[16], 

SIGN(population[POPSIZE].gene[17])«population[POPSIZE].gene[16]); 
_settextposition( 24, 73 ); 
printf("w2_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[19])«population[mem].gene[18], 

SIGN (population[POPSIZE].gene[19])«population[POPSIZE].gene[18]); 
_settextposition( 25, 73 ); 
printf("w3_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[21])«population[mem].gene[20], 

SIGN(population[POPSIZE].gene[21])«population[POPSIZE].gene[20]),- 
_settextposition( 26, 73 ); 
printf("w4_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[23])«population[mem].gene[22], 

SIGN(population[POPSIZE].gene[23])«population[POPSIZE].gene[22]); 
_settextposition( 27, 73 ); 
printf("w5_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[25])«population[mem].gene[24], 

SIGN(population[POPSIZE].gene[25])«population[POPSIZE].gene[24]); 
_settextposition( 28, 73 ) ; 
printf("w6_i = %+6.2f  (%+6.2f)",SIGN(population[mem].gene[27])«population[mem].gene[26], 

SIGN(population[POPSIZE].gene[27])«population[POPSIZE].gene[26]); 
_settextposition( 29,.73 ); 
printf("ÄDV_a  = %3i  (%3i)",(int)(population[mem].gene[28]),(int)(population[POPSIZE].gene[28])); 
_settextposition( 30,.73 ) ; 
printf("CLS_a  = %3i  (%3i)",(int)(population[mem].gene[29]),(int)(population[POPSIZE].gene[29])); 
_settextposition( 31, 73 ); 
printf("CBT_a  = %3i  (%3i)",SIGN(population[mem].gene[31])*(int)(population[mem].gene[30]), 

SIGN(population[POPSIZE].gene[31])*(int)(population[POPSIZE].gene[30])); 
_settextposition( 32, 73 ); 
printf ("ADV_i  = %3i  (%3i)", (int) (population[mem] .gene[32]), (int) (population[POPSIZE] .gene[32])) ,- 
_settextposition( 33, 73 ); 
printf("CLS_i  = %3i  (%3i)",(int)(population[mem].gene[33]),(int)(population[POPSIZE].gene[33])); 
_settextposition( 34, 73 ); 
printf("CBT_i  = %3i  (%3i)",SIGN(population[mem].gene[35])*(int)(population[mem].gene[34]), 

SIGN(population[POPSIZE].gene[35])*(int)(population[POPSIZE].gene[34])); 
} 

int SIGN(double x) 
{ 

if (x<=.5){ 
return -1; 

} 
else{ 

return 1; 
} 

} 
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Appendix E: STATS_X.dat Data Fields 

STATS l.dat 

STATS 2.dat 

This appendix provides a complete listing of the contents of each data 
field appearing in each of the 21 statistics output files that can be 
generated by ISAAC (see table 8 in Data Collection). This information 
can be used to generate desired plots using a stand-alone plotting 
program. 

STATS_l.dat contains a summary of basic force strength measures and 
consists of the following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: fraction of remaining alive red ISAACAs 

• field 3: fraction of remaining injured red ISAACAs 

• field 4: fraction of remaining (alive + injured) red ISAACAs 

• field 5: fraction of remaining alive blue ISAACAs 

• field 6: fraction of remaining injured blue ISAACAs 

• field 7: fraction of remaining (alive + injured) blue ISAACAs 

STATS_2.dat contains distributions of the number of ISAACA pairs less 
than or equal to a certain distance apart and consists of the following 
five fields: 

• field 1: distance (D) 

• field 2: iteration step (i.e., time) 

• field 3: # of red-red pairs less than or equal to a distance (D) 
apart 

• field 4: # of blue-blue pairs less than or equal to a distance (D) 
apart 

• field 5: # of red-blue pairs less than or equal to a distance (D) 
apart 
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STATS 3.dat 

STATS 4.dat 

STATS 5.dat 

STATS_3-dat contains distributions of the number of red and blue 
ISAACA less than or equal to a certain distance from their enemy flag. 
It consists of the following four fields: 

• field 1: distance (D) 

• field 2: iteration step (i.e., time) 

• field 3: # of red ISAACAs that are < distance (D) from the blue 
flag 

• field 4: # of blue ISAACAs that are < distance (D) from the red 
flag 

STATS_4.dat summarizes the actual interpoint distributions appearing 
in field 3 of STATS_2.dat above by providing their averages and 
standard deviations. It consists of the following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: average of red-red interpoint distances 

• field 3: red-red average + red-red absolute deviation 

• field 4: red-red average - red-red absolute deviation 

• field 5: absolute deviation of red-red interpoint distances 

• field 6: standard deviation of red-red interpoint distances 

• field 7: variance of red-red interpoint distances 

STATS_5.dat summarizes the actual interpoint distributions appearing 
in field 4 of STATS_2.dat above by providing their averages and 
standard deviations. It consists of the following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: average of blue-blue interpoint distances 

• field 3: blue-blue average + blue-blue absolute deviation 

• field 4: blue-blue average - blue-blue absolute deviation 
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STATS 6.dat 

STATS 7.dat 

field 5: absolute deviation of blue-blue interpoint distances 

field 6: standard deviation of blue-blue interpoint distances 

field 7: variance of blue-blue interpoint distances 

STATS_6.dat summarizes the actual interpoint distributions appearing 
in field 5 of STATS_2.dat above by providing their averages and 
standard deviations. It consists of the following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: average of red-blue interpoint distances 

• field 3: red-blue average + red-blue absolute deviation 

• field 4: red-blue average - red-blue absolute deviation 

• field 5: absolute deviation of red-blue interpoint distances 

• field 6: standard deviation of red-blue interpoint distances 

• field 7: variance of red-blue interpoint distances 

STATS_7.dat summarizes the actual interpoint distributions appearing 
in field 3 of STATS_3.dat above by providing their averages and 
standard deviations. It consists of the following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: average of red:blue-flag interpoint distances 

• field 3: red:blue-flag average + red:blue-flag absolute deviation 

• field 4: red:blue-flag average - red:blue-flag absolute deviation 

• field 5: absolute deviation of red:blue-flag interpoint distances 

• field 6: standard deviation of red:blue-flag interpoint distances 

• field 7: variance of red:blue-flag interpoint distances 

337 



Appendix E: STATS_X.dat Data Fields 

STATS 8.dat 

STATS 9.dat 

STATS 10.dat 

STATS_8.dat summarizes the actual interpoint distributions appearing 
in field 4 of STATS_3.dat above by providing their averages and 
standard deviations. It consists of the following seven fields: 

• field 1: 

• field 2: 

• field 3: 

• field 4: 

• field 5: 

• field 6: 

• field 7: 

iteration step (i.e., time) 

average of blue:red-flag interpoint distances 

blue:red-flag average + blue:red-flag absolute deviation 

blue:red-flag average - blue:red-flag absolute deviation 

absolute deviation of blue:red-flag interpoint distances 

standard deviation of blue:red-flag interpoint distances 

variance of blue:red-flag interpoint distances 

STATS_9.dat contains estimates of the spatial entropy (see Spatial Entropy 
above) of the distribution of red and blue ISAACAs. It consists of the 
following ten fields: 

field 1: iteration step (i.e., time) 

field 2: red entropy (using a 4x4 array of 20x20 blocks) 

field 3: blue entropy (using a 4x4 array of 20x20 blocks) 

field 4: red-blue entropy (using a 4x4 array of 20x20 blocks) 

field 5: red entropy (using a 8x8 array of 10x10 blocks) 

field 6: blue entropy (using a 8x8 array of 10x10 blocks) 

field 7: red-blue entropy (using a 8x8 array of 10x10 blocks) 

field 8: red entropy (using a 16x16 array of 5x5 blocks) 

field 9: blue entropy (using a 16x16 array of 5x5 blocks) 

field 10: red blue entropy (using a 16x16 array of 5x5 blocks) 

STATS_10.dat contains the distribution of clusters of red and blue 
ISAACAs using an inter-cluster distance criterion of D=l (see Appendix 
F: Cluster Counting Algorithm). It consists of the following 14 fields: 
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field 1: iteration step (i.e., time) 

field 2: total number of clusters 

field 3: number of clusters of size N=l 

field 4: number of clusters of size N=2 through N=5 

field 5: number of clusters of size N=6 through N=10 

field 6: number of clusters of size N=ll through N=15 

field 7: number of clusters of size N=16 through N=20 

field 8: number of clusters of size N=21 through N=-25 

field 9: number of clusters of size N=26 through N=-30 

field 10: number of clusters of size N=31 through N=35 

field 11: number of clusters of size N=36 through N=40 

field 12: number of clusters of size N=41 through N=45 

field 13: number of clusters of size N=46 through N=50 

field 14: number of clusters of size N=51 through N=MAX 

STATS ll.dat 

STATS_ll.dat contains the averages and deviations of sizes of clusters 
of red and blue ISAACAs using an inter-cluster distance criterion of 
D=l  (see Appendix F: Cluster Counting Algorithm). It consists of the 
following seven fields: 

. • field 1: iteration step (i.e., time) 

• field 2: average cluster size 

• field 3: average cluster size + absolute deviation 

• field 4: average cluster size - absolute deviation 

• field 5: absolute deviation of average cluster size 

• field 6: standard deviation of average cluster size 

• field 7: variance of cluster size 
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STATS 12.dat 

STATS 13.dat 

STATS_12.dat contains the distribution of clusters of red and blue 
ISAACAs using an inter-cluster distance criterion of D=2 (see Appendix 
F: Cluster Counting Algorithm). It consists of the following 14 fields: 

field 1: iteration step (i.e., time) 

field 2: total number of clusters 

field 3: number of clusters of size N=l 

field 4: number of clusters of size N=2 through N=5 

field 5: number of clusters of size N=6 through N=10 

field 6: number of clusters of size N=l 1 through N=l 5 

field 7: number of clusters of size N=16 through N=20 

field 8: number of clusters of size N=21 through N=-25 

field 9: number of clusters of size N=26 through N=-30 

field 10: number of clusters of size N=31 through N=35 

field 11: number of clusters of size N=36 through N=40 

field 12: number of clusters of size N=41 through N=45 

field 13: number of clusters of size N=46 through N=50 

field 14: number of clusters of size N=51 through N=MAX 

STATS_13.dat contains the averages and deviations of sizes of clusters 
of red and blue ISAACAs using an inter-cluster distance criterion of 
D=2 (see Appendix F: Cluster Counting Algorithm). It consists of the 
following seven fields: 

• field 1: iteration step (i.e., time) 

• field 2: average cluster size 

• field 3: average cluster size + absolute deviation 

• field 4: average cluster size - absolute deviation 

• field 5: absolute deviation of average cluster size 

• field 6: standard deviation of average cluster size 
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field 7: variance of cluster size 

STATS 14.dat 

STATS_14.dat contains the averages and deviations of the number of 
red ISAACAs within a range R=l,2,...5 of red ISAACAs. It consists of the 
following 21 fields: 

field 1: iteration step (i.e., time) 

field 2: average # of red within R=l of red 

field 3: average # of red within R=l of red + absolute deviation 

field 4: average # of red within R=l of red - absolute deviation 

field 5: absolute deviation for range R=l 

field 6: average # of red within R=2 of red 

field 7: average # of red within R=2 of red + absolute deviation 

field 8: average # of red within R=2 of red - absolute deviation 

field 9: absolute deviation for range R=2 

field 10: average # of red within R=3 of red 

field 11: average # of red within R=3 of red + absolute deviation 

field 12: average # of red within R=3 of red - absolute deviation 

field 13: absolute deviation for range R=3 

field 14: average # of red within R=4 of red 

field 15: average # of red within R=4 of red + absolute deviation 

field 16: average # of red within R=4 of red - absolute deviation 

field 17: absolute deviation for range R=4 

field 18: average # of red within R=5 of red 

field 19: average # of red within R=5 of red + absolute deviation 

field 20: average # of red within R=5 of red - absolute deviation 

field 21: absolute deviation for range R=5 
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STATS 15.dat 

STATS_15.dat contains the averages and deviations of the number of 
blue ISAACAs within a range R=l,2,...5 of blue ISAACAs. It consists of 
the following 21 fields: 

field 1: iteration step (i.e., time) 

field 2: average # of blue within R=l of blue 

field 3: average # of blue within R=l of blue + absolute deviation 

field 4: average # of blue within R=l of blue - absolute deviation 

field 5: absolute deviation for range R=l 

field 6: average # of blue within R=2 of blue 

field 7: average # of blue within R=2 of blue + absolute deviation 

field 8: average # of blue within R=2 of blue - absolute deviation 

field 9: absolute deviation for range R=2 

field 10: average # of blue within R=3 of blue 

field 11: average # of blue within R=3 of blue + absolute deviation 

field 12: average # of blue within R=3 of blue - absolute deviation 

field 13: absolute deviation for range R=3 

field 14: average # of blue within R=4 of blue 

field 15: average # of blue within R=4 of blue + absolute deviation 

field 16: average # of blue within R=4 of blue - absolute deviation 

field 17: absolute deviation for range R=4 

field 18: average # of blue within R=5 of blue 

field 19: average # of blue within R=5 of blue + absolute deviation 

field 20: average # of blue within R=5 of blue - absolute deviation 

field 21: absolute deviation for range R=5 

STATS 16.dat 

STATS_16.dat contains the averages and deviations of the number of 
red ISAACAs within a range R=l,2,...5 of blue ISAACAs. It consists of the 
following 21 fields: 
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STATS 17.dat 

field 1: iteration step (i.e., time) 

field 2: average # of red within R=l of blue 

field 3: average # of red within R=l of blue + absolute deviation 

field 4: average # of red within R=l of blue - absolute deviation 

field 5: absolute deviation for range R=l 

field 6: average # of red within R=2 of blue 

field 7: average # of red within R=2 of blue + absolute deviation 

field 8: average # of red within R=2 of blue - absolute deviation 

field 9: absolute deviation for range R=2 

field 10: average # of red within R=3 of blue 

field 11: average # of red within R=3 of blue + absolute deviation 

field 12: average # of red within R=3 of blue - absolute deviation 

field 13: absolute deviation for range R=3 

field 14: average # of red within R=4 of blue 

field 15: average # of red within R=4 of blue + absolute deviation 

field 16: average # of red within R=4 of blue - absolute deviation 

field 17: absolute deviation for range R=4 

field 18: average # of red within R=5 of blue 

field 19: average # of red within R=5 of blue + absolute deviation 

field 20: average # of red within R=5 of blue - absolute deviation 

field 21: absolute deviation for range R=5 

STATS_l7.dat contains the averages and deviations of the number of 
blue ISAACAs within a range R=l,2,...5 of red ISAACAs. It consists of the 
following 21 fields: 

• field 1: iteration step (i.e., time) 

• field 2: average # of blue within R=l of red 

• field 3: average # of blue within R=l of red + absolute deviation 

• field 4: average # of blue within R=l of red - absolute deviation 
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field 5: absolute deviation for range R=l 

field 6: average # of blue within R=2 of red 

field 7: average # of blue within R=2 of red + absolute deviation 

field 8: average # of blue within R=2 of red - absolute deviation 

field 9: absolute deviation for range R=2 

field 10: average # of blue within R=3 of red 

field 11: average # of blue within R=3 of red + absolute deviation 

field 12: average # of blue within R=3 of red - absolute deviation 

field 13: absolute deviation for range R=3 

field 14: average # of blue within R=4 of red 

field 15: average # of blue within R=4 of red + absolute deviation 

field 16: average # of blue within R=4 of red - absolute deviation 

field 17: absolute deviation for range R=4 

field 18: average # of blue within R=5 of red 

field 19: average # of blue within R=5 of red + absolute deviation 

field 20: average # of blue within R=5 of red - absolute deviation 

field 21: absolute deviation for range R=5 

STATS 18.dat 

STATS_18.dat contains the averages and deviations of the number of 
both red and blue ISAACAs within a range R=l,2,...5 of red ISAACAs. It 
consists of the following 21 fields: 

• field 1: iteration step (i.e., time) 

• field 2: average # of ISAACAs within R=l of red 

• field 3: average # of ISAACAs /w R=l of red + absolute deviation 

• field 4: average # of ISAACAs /w R=l of red - absolute deviation 

• field 5: absolute deviation for range R=l 

• field 6: average # of ISAACAs /w R=2 of red 

• field 7: average # of ISAACAs /w R=2 of red + absolute deviation 

• field 8: average # of ISAACAs /w R=2 of red - absolute deviation 
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• field 9: absolute deviation for range R=2 

• field 10:average* of ISAACAs /wR=3ofred 

• field 11: average # of ISAACAs /w R=3 of red + absolute 
deviation 

• field 12: average # of ISAACAs /w R=3 of red - absolute deviation 

• field 13: absolute deviation for range R=3 

• field 14: average # of ISAACAs /w R=4 of red 

• field 15: average # of ISAACAs /w R=4 of red + absolute 
deviation 

• field 16: average # of ISAACAs /w R=4 of red - absolute deviation 

• field 17: absolute deviation for range R=4 

• field 18: average # of ISAACAs /w R=5 of red 

• field 19: average # of ISAACAs /w R=5 of red + absolute 
deviation 

• field 20: average # of ISAACAs /w R=5 of red - absolute deviation 

• field 21: absolute deviation for range R=5 

STATS 19.dat 

STATS_19.dat contains the averages and deviations of the number of 
both red and blue ISAACAs within a range R=l,2,...5 of blue ISAACAs. It 
consists of the following 21 fields: 

• field 1: iteration step (i.e., time) 

• field 2: average # of ISAACAs within R=l of blue 

• field 3: average # of ISAACAs /w R=l of blue + absolute 
deviation 

• field 4: average # of ISAACAs /w R=l of blue - absolute deviation 

• field 5: absolute deviation for range R=l 

• field 6: average # of ISAACAs /w R=2 of blue 

• field 7: average # of ISAACAs /w R=2 of blue + absolute 
deviation 

• field 8: average # of ISAACAs /w R=2 of blue - absolute deviation 

• field 9: absolute deviation for range R=2 
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• field 10:average* of ISAACAs /wR=3ofblue 

• field 11: ave # of ISAACAs /w R=3 of blue + absolute deviation 

• field 12: ave # of ISAACAs /w R=3 of blue - absolute deviation 

• field 13: absolute deviation for range R=3 

• field 14: average # of ISAACAs /w R=4 of blue 

• field 15: ave # of ISAACAs /wR=4ofblue + absolute deviation 

• field 16: ave # of ISAACAs /w R=4 of blue - absolute deviation 

• field 17: absolute deviation for range R=4 

• field 18: average* of ISAACAs /wR=5ofblue 

• field 19: ave # of ISAACAs /w R=5 of blue + absolute deviation 

• field 20: ave # of ISAACAs /w R=5 of blue - absolute deviation 

• field 21: absolute deviation for range R=5 

STATS_20.dat 

STATS_20.dat contains the center-of-mass (COM) coordinates of red 
and  blue   ISAACAs  and   the   distances  between   the   center-of-mass 
positions and red and blue flags. It consists of the   following thirteen 
fields: 

• field 1: iteration step (i.e., time) 

• field 2: red COM x-coordinate 

• field 3: red COM y-coordinate 

• field 4: distance between red COM x-coordinate and red flag 

• field 5: distance between red COM x-coordinate and blue flag 

• field 6: blue COM x-coordinate 

• field 7: blue COM y-coordinate 

• field 8: distance between blue COM x-coordinate and red flag 

• field 9: distance between blue COM x-coordinate and blue flag 

• field 10: total (red+blue) COM x-coordinate 

• field 11: total (red+blue) COM y-coordinate 

• field 12: distance between total COM x-coordinate and red flag 
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field 13: distance between total COM x-coordinate and blue flag 

STATS 21.dat 

STATS_21.dat contains the number of red and blue ISAACAs within 
ranges R=l,2,...,5 of the red and blue flags, expressed as the fraction of 
the maximum possible number. It consists of the following eleven 
fields: 

field 1: iteration step (i.e., time) 

field 2: number of red within R=l of blue flag 

field 3: number of blue within R=l of red flag 

field 4: number of red within R=2 of blue flag 

field 5: number of blue within R=2 of red flag 

field 6: number of red within R=3 of blue flag 

field 7: number of blue within R=3 of red flag 

field 8: number of red within R=4 of blue flag 

field 9: number of blue within R=4 of red flag 

field 10: number of red within R=5 of blue flag 

field 11: number of blue within R=5 of red flag 
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Appendix F: Cluster Counting Algorithm 
ISAAC'S rudimentary data collection capability provides facilities to 
calculate seven basic classes Of information; see Data Collection. The fifth 
class of data consists of keeping track of the averages and distributions 
of the sizes of clusters of ISAACAs. Because this class of data provides an 
insight into the gross structural appearance of the entire battlefield, it 
can be thought of as a crude pattern recognition measure. This 
appendix provides a brief heuristic description of the cluster counting 
algorithm (as implemented in ISAAC_CE and ISAAC_SQ) and includes 
the C source code listing of the function that implements this algorithm 
(i.e., CLUSTER_1 in ISAAC_T3.c; see Table 12). The contents of the 
output files is described in 

Heuristic Recipe 

The cluster counting algorithm used by ISAAC is patterned after the 
Hoshen-Kopelman algorithm described in [50]. A heuristic description of 
this algorithm follows. 

Given a distribution of ISAACAs spread throughout the battlefield, the 
"cluster counting problem" is to find an algorithm that assigns all 
ISAACAs within the same cluster the same label and gives different 
labels to ISAACAs belonging to different clusters. An ISAACA's 
membership within a cluster is defined by an inter-cluster distance 
criterion of either D=l (meaning that two ISAACAs that are separated 
by one lattice cell belong to the same cluster) or D=2 (meaning that two 
ISAACAs that are separated by one or two lattice cells belong to the same 
cluster). 

The approach is to scan the battlefield - cell by cell and row by row - 
assigning cluster-specific labels to occupied cells, and leaving empty 
cells alone. The first cluster that is encountered gets assigned the label 
L=l. Neighboring occupied cells, within the same row, get assigned the 
same label. As the scan continues to the right, occupied cells that are 
farther than D=l (or D=2) from the right-most occupied cell of the first 
cluster are assigned the label L=2, and so on. 

A potential problem occurs with this labeling scheme when ISAACAs 
belonging to the same cluster are inadvertently assigned different labels 
on different rows. Consider figure 93, which shows a fragment of the 
same cluster on two successive rows, and the result of applying the 
heuristic cluster-counting algorithm as thus far described (using D=l as 
the inter-cluster distance criterion). 

Figure 93 shows that the first cell (on the upper left), which is occupied, 
is immediately assigned the label L=l. The second cell is empty and is 
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left alone. The third cell contains an ISAACA that is farther from cell #1 
than one unit, and is therefore assigned the label L=2. This labeling 
scheme continues through the second row until we reach the "question 
mark," at which point we have to make a decision. What label should we 
assign to this cell? According to the top row, the label is L=3. According 
to the second row, the label is L=2. The answer is that we choose L=2 to 
keep the total number of labels as small as possible. We must also 
relabel the cell with L=3 with L=2 to indicate that it is really part of the 
same cluster as defined by label L=2. 

Figure 93. A fragment of a cluster of ISAACAs and the result of 
applying the cluster-counting heuristic 

o 1 2 3 

1 2 2 2 ? 

More generally, the Hoshen-Kopelman heuristic is to partition all labels 
into two groups: good labels and bad labels. The good labels refer to labels 
that correctly characterize distinct clusters. The bad labels refer to 
labels that appear at first to characterize a new cluster but are actually 
assigned to cells belonging to previously labeled clusters. 

These two groups are kept track of by an additional array, the label of 
labels (called label_of_labels[i] in CLUSTER! below). A good label, say 
1, is characterized by label_of_labels[lg]=lg. A bad label, say lb, is 
characterized by label_of_labels[lb]=x, where x < lb. In this way, the 
battlefield is first scanned in the manner described above, and each 
cluster is assigned a initial label (or set of labels). After the scan is 
completed, the cells are relabeled according to the following logic: 

• If the label of a cell is lc, check to see if label_of_labels[lc] = lc: if 
yes, then the label is good (leave it alone); if no, then the label is 
bad, and label_of_labels[lc] = lc'. 

• Check to see if label_of_labels[lc'] = lc': if yes, then the label is 
good (relabel the cell with initial label lc with the label lc'); if no, 
then the label is bad, and label_of_labels[lc']  = lc". 

• Continue in this way until the search ends with a good label, say 
1 , and relabel the cell with that label. 
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Source Code 
/  /*********************************A*A* A*. ******* A A A******************************************** A* A 

II 
II returns the distribution of cluster sizes 
// (using inter-cluster distance criteria of D=l) 
// ' 
/ /AAMHtitÄÄA'A'A'A'A'llpArArA'A "A A1 A A A A A A A A A A'^A&AititAA^A'AAAAA A AA'A&AA?£A^AAAA A A A AA A£A£A'ArAA'AAAArA'AA'A?'fcAA^Al£A?A?AA&AA?A?ib&AAA' 

void CLUSTER_l(int isize, struct red_parameters *redp, struct blue_parameters *bluep, 
struct battle_parameters *batp, struct statistics *s) 

int i, j, ll, n; 
int label_min, ix, iy; 
int count[MAXCLUSTERSIZE+l]; 
int label_of_labels[MAXCLUSTERSIZE+l]; 
int "label; 
float ep=0,ss; 

// 
// allocate memory for label 
// 
label = (int**) _fmalloc( (MAXISAACNUM+1) * sizeof(int*)); 
if (Ilabel) nomem(); 
for (i = 0; i < (MAXISAACNUM+1); i++ ){ 

label[i] = (int*) _fmalloc( (MAXISAACNUM+1) * sizeof(int)); 
if (!label[i]) nomem(); 

} 

// initialize label matrix 
for (i=l; i<=batp->isize; i++){ 

for (j=l; j<=batp->isize; j++){ 
// label < 0 if ISA AC A is present, else 0 
label[i]fj] = -batp->ioccupation[i]|j]; 

// initialize 'good'-label matrix 
for (i=l; i<=MAXCLUSTERSIZE; i++){ 

label_of_labels[i]=MAXCLUSTERSIZE; 

// initialize cluster count variable to zero 
n = 0; 

// loop through battlefield 
for (i=l; i<=batp->isize; i++){ 

for (j=l; j<=batp->isize; ]'++){ 
if(n==0){ 

if (label[i]Ij] < 0){ // then found first ISAACA without a label 
n=l; 
label[i][j]=l; 
label_of_labels[l]=l; 

} 
} 
else{ // see if i,j belongs to known clusters (at neighboring sites) 

// if < 0 then ISAACA at i,j does not yet have a label 
if(label[i][j]<0){ 

// give it a temporary large label 
label_min = MAXCLUSTERSIZE + 1; 
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//  need to test these sites: 
// 
// (i-l,j-l) | (i,j-l) | xxxxxxx 
//   
// (i-l/j)   |   IJ    | xxxxxxx 
//     
//   (i-l,j+l) | xxxxxxx  | xxxxxxx 
// 

//first try i-l,j-l 
ix = i-1; 
iy = j-l; 
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){ 

if (label[ix][iy] < label_min && label[ix][iy] > 0) 
label_min = label[ix][iy]; 

} 
//tryi,j-l 
ix = i; 
iy = j-l; 
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){ 

if (labelfix] [iy] < label_min && label[ix][iy] > 0) 
label_min = label[ix][iy]; 

} 
//try i-1, j 
ix = i-1; 
iy=j; 
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){ 

if (label[ix][iy] < label_min && labelfix] [iy] > 0) 
label_min = label[ix][iy]; 

} 
//tryi-l,j+l 
ix = i-1; 
iy = j+i; 
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){ 

if (labelfix] [iy] < label_min && label[ix][iy] > 0) 
label_min = labelfix] [iy]; 

if (labeLmin < MAXCLUSTERSIZE + 1) { 
// give i,j the minimum valued label 
label[i][j] = label_min; 

// change all neighboring label_of_labels to label_min 
// first look at i-1, j-1 
ix = i-1; 
iy = j-l; 
if (ix > 0 && ix <= batp->isize && 

iy > 0 && iy <=batp->isize){ 
if (labelfix] [iy] > label_min && 

label_of_labels[label[ix][iy]] > label_min){ 
label_of_labelsflabel[ix][iy]] = label_min; 

} 
} 
// look at i, j-1 
ix = i; 
iy = j-l; 
if (ix > 0 && ix <= batp->isize && 

iy > 0 && iy <=batp->isize){ 
if (labelfix] [iy] > label_min && 

label_of_labels[label[ix][iy]] > label_min){ 
label_of_labels[label[ix][iy]] = label_min; 

} 
} 
// look at i-1, j 
ix = i-1; 
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} 
else{ 

iy=j; 
if (ix > 0 && ix <= batp->isize && 

iy > 0 && iy <=batp->isize){ 
if (labelfix] [iy] > labeLmin && 

label_of_labels[label[ix][iy]] > label_min){ 
label_of_labels[label[ix][iy]] = label_min; 

} 
} 
// look at i-1, j+1 
ix = i-1; 
iy = j+i; 
if (ix > 0 && ix <= batp->isize && 

iy > 0 && iy <=batp->isize){ 
if (labelfix] [iy] > kbel_min && 

label_of_labels[label[ix][iy]] > label_min){ 
label_of_labels[label[ix][iy]] = labeLmin; 

} 
} 

// i,j could not be attached to old cluster; add a new cluster 
++n; 
label[i][j]=n; 
label_of_labels[n]=n; // mark as a 'good' label 

} 

// 
// find the array of real (i.e. 'good') labels 
// 
for (i=l; i<=batp->isize; i++){ 

for (j=l; j<=batp->isize; ]'++){ 
if(label[i]fj]>0){ 

doagain: 11 = label[i][j]; 
label[i][j] = label_of_labels[label[i]fj]]; 
if (11 != label[i][j]) goto doagain; 

} 
} 

// 
// initialize count array 
// 
for (i=l; i<=MAXCLUSTERSIZE; ++i){ 

count[i] = 0; 
} 

// 
// get the size of each cluster (labeled by label[i][j] = l,2,...n) 
// 
for (i=l; i<=batp->isize; i++){ 

for (j=l; j<=batp->isize; j++){ 
if (label[i][j] > 0) ++count[ label[i][j] ]; 

} 
} 

// 
// initialize cluster distribution 
// 
for (i=l; i<=MAXCLUSTERSIZE; i++) s->clusters_l[i] = 0; 
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// 
// get cluster distribution 
// 
s->number_of_clusters_l = 0; 
for (i=l; i<=MAXCLUSTERSIZE; i++){ 

++s->clusters_l [count[i]]; 
if (count[i]>0) ++s->number_of_clusters_l; 

//AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

II 
II calculate averages and deviations 
// 

// initialize average cluster 
s->cluster_l_ave = 0; 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

// calculate average cluster size 
for(i=l;i<=n;i++){ 
s->cluster_l_ave = s->cluster_l_ave + (float)(count[i]); 

} 

if (s->number_of_clusters_l < 2){ 
s->cluster_l_adev = 0; 
s->cluster_l_var = 0; 
s->cluster_l_sdev = 0; 

} 
else{ 

s->cluster_l_ave = s->cluster_l_ave / (float)(s->number_of_clusters_l); 
// calculate deviation 
s->cluster_l_adev = 0; 
s->cluster_l_var = 0; 
for (i=l; i<=n; i++){ 

if (count[i]>0) { 
ss = (float)(count[i]) - s->cluster_l_ave; 
s->cluster_l_adev = s->cluster_l_adev + abs_float(ss); 
ep = ep + ss; 
s->cluster_l_var = s->cluster_l_var + (ss*ss); 

} 
} 
s->cluster_l_adev = s->cluster_l_adev / (float)(s->number_of_clusters_l); 
s->cluster_l_var = (s->cluster_l_var - ep*ep/(float)(s->number_of_clusters_l))/ 

(float) ((s->number_of_clusters_l-l)); 
if(s->cluster_l_var < 0) s->cluster_l_var = 0; 
s->cluster_l_sdev= (float) (sqrt((double) (s->cluster_l_var))); 

} 

// 
// free memory 
// 

for (i = 0; i < (MAXISAACNUM+1); i++ ){ 
_ffree(label[i]); 

} 
_ffree(label); 

/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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Appendix G: Sample Input Data Files 
This appendix contains sample data input files for ISAAC_CE (i.e., 
ISAAC'S multi-squad core-engine), ISAAC_GA (i.e., the stand-alone 
genetic algorithm "evolver") and ISAAC_PM (i.e., the parameter-space 
"mapper"). 

Sample Data Input Füe for ISAAC_CE: ISAAC.dat 

ISAAC.dat is the input data file for ISAAC_CE. The section A Concise 
User's Guide to ISAAC described the contents of this file. Note that this 
file does not include command and control related parameter values 
(described in pertinent sections of Contents of ISAAC'S Input Data File; 
see figures 28 and 29). 

* GENERAL BATTLE PARAMETERS 
********************************************* 
batüe_size 80 
* 

* initial distribution 
* 
init_dist 1 
R_box_(l,w) 20,20 10,10 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 
RED_cen_(x,y) 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 
B_box_(l,w) 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35 
BLUE_cen_(x,y) 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 
B_flag_(x,y) 79,79 
R_flag_(x,y) 1,1 
termination? 2 
move_order? 2 
combat_flag? 2 
terrain_flag? 0 

* fratricide parameters 

red_frat_flag? 0 
blue_frat_flag? 0 
red_frat_rad 1 
blue_frat_rad 1 
red_frat_prob 0.001000 
blue_frat_prob 0.001000 

* reconstitution 
* 
reconst_flag? 0 
RED_recon_time    10 
BLUE_recon_time   10 
AkkkAAAAAAAAAAAAAAAAAAAkkkkkkkkkkkkkk 

* STATISTICS PARAMETERS 

stat_flag? 0 
goal_stat_flag? 0 
center_mass_flag? 0 
interpoint_flag? 0 
entropy_flag? 0 
cluster_l_flag? 0 
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cluster_2_flag?        0 
neighbors_flag?      0 
*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*A*AAAAAAA*AAAAA 

* RED GLOBAL COMMAND PARAMETERS 

RED_global_flag    0 

* BLUE GLOBAL COMMAND PARAMETERS 

BLUE_global_flag   0 
****************************************************** 
* RED LOCAL COMMAND PARAMETERS 

RED_command_flag    0 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA* 

* BLUE LOCAL COMMAND PARAMETERS 

BLUE_command_flag 0 
***»*mUA*AAA*AAAAAAAAAAAAAAAAAAAAAAAAA 

* RED ISAACA PARAMETERS 

nurn_reds 100 
squads 1 
num_per_squad 100  25  25  25   0   0   0   0   0   0 
M_RANGE 1     112222222 
personality 1 

* ALIVE personality weights 
* 
wl_a:R_alive_R 10.000  76.00  10.00  10.000  76.000  76.000  76.000  76.000  76.000  76.000 
w2_a:R_alive_B 40.100  61.00 99.00  99.100  61.100  61.100  61.100  61.100  61.100  61.100 
w3_a:R_injrd_R 10.100  10.100   0.100  -4.100  -4.100  -4.100  -4.100  -4.100  -1.100  -4.100 
w4_a:R_injrd_B 40.500 99.500 99.000 99.000  99.500  99.500  76.000  76.000  76.000  76.000 
w5_a:R_R_goal 0.000  0.000   0.000 16.100 16.100 -16.100 -16.100 -16.100 -16.100 -16.100 
w6_a:R_B_goal 50.000 47.000 25.000 25.000 47.000  47.000  47.000  47.000  47.000  47.000 

' INJURED personality weights 

wl_i: 
w2_i: 
w3_i: 
w4_i: 
w5_i: 

R_alive_R 76.000 76.00  20.00  20.000  76.000  76.000  76.000  76.000  76.000  76.000 
R_alive_B 61.100 61.00 99.100 99.100  61.100  61.100  61.100  61.100  61.100  61.100 
:R_injrd_R -4.100 -4.100   0.100  -4.100  -4.100  -1.100  -4.100  -4.100  -4.100  -4.100 
R_injrd_B 99.500 99.500 99.000 99.000 99.500  99.500  76.000  76.000  76.000  76.000 
R_R_goal 50.100 0.100  0.000  16.100  16.100 -16.100 -16.100 -16.100 -16.100 -16.100 

w6_i:R_B_goal        0.000  47.000 25.000 25.000  47.000  47.000  47.000  47.000  47.000  47.000 
* 
* ISAACA-LC weights 
* 
w7:R_loc_comdr     1.000000 
w8:R_loc_goal        1.000000 
* 
* defense parameters 
* 
defense_flag 1 
alive_strength 1112111111 
injured_strength     1112111111 
* 
* sensor/fire ranges 

S_RANGE 5578888888 
F_RANGE 3333888888 
* 

* communications 

COMM_flag 0 
COMM_range 0 
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COMM_weight      0.000000 
* 
* movement constraints 

movement_flag 1 
C_RANGE 5   4 3 5   7   7   7   7   7   7 
A:ADVANCE_num 3   3 0 0   111111 
A:CLUSTER_num 3   5 7 7  16  16  16  16  16  16 
A:COMBAT_num 0   1 -5 -5  -1   -1   -1   -1   -1   -1 
I:ADVANCE_num 4   4 0 0   9   9   9   9   9   9 
I:CLUSTER_num 9   9 7 7999999 

I:COMBAT_num 6   6 -5 -5  -16 -16 -16 -16 -16 -16 
C_RANGE_(m,M) 1,4 
A:ADV_(m,M) 0,4 
A:CLUS_(m,M) 1,0 
A:COMB_(m,M) -3,3 
l:ADV_(m,M) 0,4 
I:CLUS_(m,M) 1,8 
I:COMB_(m,M) -3,3 
A:R_R_min_dist 0.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 
A:R_B_min_dist 0.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 
A:R_R_goal_min 20.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 
I:R_R_min_dist 0.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 
I:R_B_min_dist 0.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 
I:R_R_goal_min 10.000 0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000 

* cqmbat/ engagement 

shot_prob 0.005  0.007  0.010  0.005  0.005  0.005  0.005   0.005  0.005  0.005 
R_max_eng_num  557  10   222222 

* BLUE ISAACA PARAMETERS 
»***************AAAAAAAAAAAAAAAAAAAAAAA 

num_blues J00 
squads 1 
num_per_squad 100  15  23   0   0   0   0   0   0   0 
M_RANGE 1    11    2222222 
personality 1 
* 

* ALIVE personality weights 
* 

wl_a:B_alive_B 10.000  10.000 76.000  76.000  76.000  76.000  76.000  76.000  76.000  76.000 
w2_a:B_alive_R 40.100 100.00 61.00  61.100  61.100  61.100  61.100  61.100  61.100  61.100 
w3_a:B_injrd_B 10.000   0.000 0.000  -4.100  -4.100  -1.100  -4.100  -4.100  -1.100  -4.100 
w4_a:B_injrd_R 40.500  99.500 76.000  76.000  99.500  99.500  76.000  76.000  76.000  76.000 
w5_a:B_B_goal      0.000   0.000 0.000 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 
w6_a:B_R_goal 50.000  99.000 47.000  47.000  47.000  47.000  47.000  47.000  47.000  47.000 

* INJURED personality weights 

wl_i:B_aHve_B 10.000  76.000  76.000  76.000  76.000  76.000  76.000  76.000  76.000  76.000 
w2_i:B_alive_R 40.100  61.100  61.100  61.100  61.100  61.100  61.100  61.100  61.100  61.100 
w3_i:B_injrd_B 10.100  -4.100  -4.100  -1.100  -4.100  -4.100  -4.100  -1.100  -4.100  -4.100 
w4_i:B_injrd_R 40.500  99.500  76.000  76.000  99.500  99.500  76.000  76.000  76.000  76.000 
w5_i:B_B_goal 0.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 
w6_i:B_R_goal 50.000  47.000  47.000  47.000  47.000  47.000  47.000 47.000  47.000  47.000 

* ISAACA-LC weights 

w7:B_loc_comdr  1.000000 
w8:B_loc_goal      1.000000 
* 
* defense parameters 

defense_flag 1 
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4 3 7 7 7   7   7 7 7 
0 0 1 1 1 1 1 1 1 
5 7 16 16 16 16 16 16 16 
-5 -1 -1 -1 -1 -1 ■1 • 1 - 1 

alive_strength 1111111111 
injured_strength     1111111111 

* sensor/ fire ranges 
* 
S_RANGE 5873333333 
FJRANGE 3433333333 
* 
* communications 
* 
COMM_flag 0 
COMM_range 0 
COMM_weight      0.000000 
* 

* movement constraints 

movement_flag 1 
CLRANGE 3 
A:ADVANCE_num2 
A:CLUSTER_num 8 
A:COMBAT_num    3 
I:ADVANCE_num   3999999999 
LCLUSTERnum 12   999999999 
LCOMBATnum 5  -2 -16 -16 -16 -16 -16 -16 -16 -16 
C_RANGE_(m,M) 1,4 
A:ADV_(m,M) 0,4 
A:CLUS_(m,M) 1,8 
A:COMB_(m,M) -3,3 
I:ADV_(m,M) 0,4 
I:CLUS_(m,M) 1,8 
I:COMB_(m,M) -3,3 
A:RJ?_min_dist 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
A:R_B_min_dist 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
A:R_R_goal_min 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
I:R_R_min_dist 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
I:R_B_min_dist 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
I:R_R_goal_min 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
* 
* combat/ engagement 

shot_prob 0.005  0.010  0.010  0.005  0.005  0.005  0.005  0.005  0.005  0.005 
B_max_eng_num     5322222222 
********************************* 
* TERRAIN PARAMETERS 
************* ****** ************** 
(l)_size 2 
(l)_center_x 32 
(l)_center_y 50 
(2)_size 5 
(2)_center_x 44 
(2)_center_y 44 
(3)_size 2 
(3)_center_x 58 
(3)_center_y 50 
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Sample Data Input Files for ISAAC_GA 

ISAAC_GA uses two input data files: 

• GA_ISAAC.dat, which is the default name of the file that 
contains a truncated version of ISAAC'S input data file (see 
Contents of ISAAC'S Input Data File in A Concise User's Guide to 
ISAAC) 

• GA_DATA.dat, which is the default name of the file that contain 
GA-specific data entries needed to start the run (see Contents of 
ISAACjGA's Input Data File in Genetic Algorithm Evolutions of 
ISAACA Personalities). 

GA ISAAC.dat 

Note that GA_ISAAC.dat defines single-squad red and blue forces and 
does not contain any command and control parameters. 

******************************************** 
* GENERAL BATTLE PARAMETERS 
*************************** 
battie_size 50 
* 

* initial distribution 

init dist 1 
R_box_(Lw) 15,15 
RED_cen_(x,y) 10,10 
B_box_(l,w) 15,15 
BLUE_cen_(x,y) 40,40 
B_flag_(X/y) 49,49 
R_flag_(x,y) 1,1 
termination? 2 
move order? 2 
combat_flag? 2 
terrain_flag? 
* 

0 

* fratricide parameters 
* 

red_frat_flag? 0 
blue_frat_flag? 0 
red_frat_rad 1 
blue_frat_rad 1 
red_frat_prob 0.001000 
blue_frat_prob 
* 

0.001000 

* reconstitution 
* 

reconst_flag? 0 
RED_recon_time 1 
BLUE_recon_time 1 
************************************ 
* STATISTICS PARAMETERS 

stat_flag? 0 
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goal_stat_flag? 0 
center_mass_flag? 0 
interpoint_flag? 0 
entropy_flag? 0 
cluster_l_flag? 0 
cluster_2_flag? 0 
neighbors_flag? 0 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA* 

* RED GLOBAL COMMAND PARAMETERS 

RED_global_flag    0 

* BLUE GLOBAL COMMAND PARAMETERS 

BLUE_global_flag  0 

* RED LOCAL COMMAND PARAMETERS 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

RED_command_flag 0 

* BLUE LOCAL COMMAND PARAMETERS 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

BLUE_command_flag 0 

* RED ISAACA PARAMETERS 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

num_reds 50 
M_RANGE 1 
personality 1 

* ALIVE personality weights 

wl_a:R_alive_R 10.000000 
w2_a:R_alive_B 40.000000 
w3_a:R_injrd_R 10.000000 
w4_a:R_injrd_B 40.000000 
w5_a:R_R_goal 0.000000 
w6_a:R_B_goal 0.000000 

* INJURED personality weights 
* 
wl_i:R_alive_R 10.000000 
w2_i:R_alive_B 40.000000 
w3_i:R_injrd_R 10.000000 
w4_i:R_injrd_B 40.000000 
w5_i:R_R_goal 0.000000 
w6_i:R_B_goal 0.000000 

* ISAACA-LC weights 

w7:R_loc_comdr     1. 
w8:R_loc_goal        1. 

* sensor/fire ranges 

S_RANGE 1 
F_RANGE 1 

* communications 
* 
COMM_flag 0 
COMM_range 0 
COMM_weight      0.000000 

* movement constraints 
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movement_flag 1 
C_RANGE 3 
A:ADVANCE_num  1 
A:CLUSTER man 5 
A:COMBAT_num -3 
I:ADVANCE_num 1 
I:CLUSTER_num 5 
I:COMBAT num -3 
C_RANGE_(m,M) 0,0 
A:ADV_(m,M) 0,0 
A:CLUS_(m,M) 0,0 
A:COMB_(m,M) 0,0 
I:ADV_(m,M) 0,0 
I:CLUS_(m,M) 0,0 
I:COMB_(m,M) 0,0 
A:R_R_min_dist 0.000000 
A:R_B_min_dist 0.000000 
A:R_R_goal_min 0.000000 
I:R_R_min_dist 0.000000 
I:R_B_min_dist 0.000000 
I:R_R_goal_min 0.000000 

* combat/ engagement 
* 

shot_prob 0.005000 
R_max_eng_num   6 

* BLUE ISAACA PARAMETERS 

num_bhies 50 
M.RANGE 1 
personality 1 
* 
* ALIVE personality weights 

wl_a:B_alive_B 5.000000 
w2_a:B_alive_R 99.000000 
w3_a:B_injrd_B 0.000000 
w4_a:B_injrd_R 99.000000 
w5_a:B_B_goal 0.000000 
w6_a:B_R_goal 50.000000 
* 
* INJURED personality weights 
* 

wl_i:B_alive_B 5.000000 
w2_i:B_alive_R 99.000000 
w3_i:B_injrd_B 0.000000 
w4_i:B_injrd_R 99.000000 
w5_i:B_B_goal 0.00 
w6_i:B_R_goal 50.000000 
* 
* ISAACA-LC weights 

w7:B_loc_comdr     1. 
w8:BJoc_goal        1. 
* 
* sensor/ fire ranges 

S_RANGE 4 
F_RANGE 3 

* communications 

COMM_flag 0 
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COMM_range        0 
COMM_weight      0.000000 

* movement constraints 

movement_flag 1 
C RANGE 3 
A:ADVANCE_num 0 
A:CLUSTER_num 1 
A:COMBAT_num -3 
I:ADVANCE_num 0 
I:CLUSTER_num 1 
I:COMBAT_num -3 
C_RANGE_(m,M) 0,0 
A:ADV_(m,M) 40,0 
A:CLUS_(m,M) 0,0 
A:COMB_(m,M) 10,0 
I:ADV_(m,M) 0,0 
I:CLUS_(m,M) 40,0 
I:COMB_(m,M) 0,0 
A:B_B_min_dist 0.000000 
A:B_R_min_dist 0.000000 
A:B_B_goal_min 0.000000 
I:B_B_min_dist 0.000000 
I:B_R_min_dist 0.000000 
I:BJB_goal_min 
* 

0.000000 

* combat/ engagement 
* 
shot_prob 0.005000 
B_max_eng_num 6 

* TERRAIN PARAMETERS 

GA DATA.dat 

*********************AAA******************* 

GA parameters 

num_generations 50 
num_initial_conds 25 
max_time_to_goal 100 
penalry_power 2 
best_personalities_to_füe? 1 
min_dist_genes_flag 0 
initial_condition_genes_flag 0 

* penalty weights (1-100) 

AAAAAA***********A*AAAAAA**AAAAAAAA*******A 

wl_time_to_goal 0 
w2_friendly_loss 0 
w3_enemy_loss 0 
w4_red_to_blue_survival_ratio 0 
w5_friendly_CM_to_enemy_flag 0 
w6_enemy_CM_to_friendly_flag 10 
w7_friendly_near_enemy_flag     0 
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w8_enemy_nearjriendly_flag 10 
w9_red_fratridde_hits 0 
wlO_blue_fratricide_hits 0 

* 
* termination parameters 
* 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA» 

termination_code? 4 
flag_containment_range 12 
containment_number 10 
red CM_to_BF_frac .5 

ISAACA chromosome 

gene[l]:S_range 1,10 
gene[2]:F_range 1,10 
gene[3]:C_range 1,10 
gene[4]:wl_alive 0,100 
gene[5]:wl_alive_sign 0,1 
gene[6]:w2_alive 0,100 
gene[7]:w2_alive_sign 0,1 
gene[8]:w3_alive 0,100 
gene'[9]:w3_alive_sign 0,1 
gene[10]:w4_alive 0,100 
gene[ll]:w4_alive_sign 0,1 
gene[12]:w5_alive 0,100 
gene[13]:w5_alive_sign 0,1 
gene[14]:w6_alive 0,100 
gene[15]:w6_alive_sign 0,1 
gene[16]:wl_injured 0,100 
gene[17]:wl_injured_sign 0,1 
gene[18]:w2_injured 0,100 
gene[19]:w2_injured_sign 0,1 
gene[20]:w3_injured 0,100 
gene[21]:w3_injured_sign 0,1 
gene[22]:w4_injured 0,100 
gene[23]:w4_injured_sign 0,1 
gene[24]:w5_injured 0,100 
gene[25]:w5_injured_sign 0,1 
gene[26]:w6_injured 0,100 
gene[27]:w6_injured_sign 0,1 
gene[28]:ADV_alive 0,20 
gene[29]:CLS_alive 0,50 
gene[30]:CBT_alive 0,50 
gene[31]:CBT_alive_sign 0,1 
gene[32]:ADV_injured 0,20 
gene[33]:CLS_injured 0,50 
gene[34]:CBT_injured 0,50 
gene[35]:CBT_injured_sign 0,1 
gene[36]:min_dist_flag 0,1 
gene[37]:R_R_min_dist_alive 0,10 
gene[38]:R_B_min_dist_alive 0,10 
gene[39]:R_R_goal_min_alive 0,40 
gene[40]:R_R_min_dist_injured 0,10 
gene[41]:R3_min_dist_injiired 0,10 
gene[42]:R_R^oal_min_injured 0,40 
gene[43]:initial_box_size 1,50 
gene[44]:initial_box_center_x 1,30 
gene[45]:initial_box_center_y 1,30 
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Sample Data Input File for ISAAC_PM: PHASE.dat 

ISAAC_PM uses two input data files: 

• P_ISAAC.dat, that contains a truncated version of ISAAC'S input 
data file (see Contents of ISAAC'S Input File in Concise User's Guide 
to ISAAC). This file has exactly the same form as GA_ISAAC.dat 
shown above. Like GA_ISAAC.dat, P_ISAAC.dat defines 
single-squad red and blue forces and does not contain any 
command and control parameters. 

• PHASE.dat, that contains ISAAC_PM-specific data entries 
needed to start the run. It is essentially a truncated version of 
GA_DATA.dat (see above). See Contents of ISAAC_PM's Data Input 

File: Phase.dat. 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

* GA parameters 
* 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-AA-AA 

num_initial_conds 15 
max_time_to_goal 125 
penalty_power 2 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

* 

* penalty weights (1-100) 
* 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

wl_time_to_goal 0 
w2_friendly_loss 10 
w3_enemy_loss 0 
w4_red_to_bliie_survival_ratio 0 
w5_friendly_CM_to_enemy_flag 0 
w6_enemy_CM_to_friendly_flag 0 
w7_friendly_near_enemy_flag 0 
w8_enemy_near_friendly_flag 0 
w9_red_fratricide_hits 0 
wlO_blue_fratricide_hits 0 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

* 

* termination parameters 
* 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

termination_code? 4 
flag_containment_range 15 
containment_number 10 

red CM to BF frac .5 
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